Явление разрушения металлов под воздействием окружающей среды

Коррозия металлов и способы защиты от нее

Коррозия – это процесс разрушения металлов и металлических конструкций под воздействием различных факторов окружающей среды – кислорода, влаги, вредных примесей в воздухе.

Коррозионная стойкость металла зависит от его природы, характера среды и температуры.

  • Благородные металлы не подвергаются коррозии из-за химической инертности.
  • Металлы Al, Ti, Zn, Cr, Ni имеют плотные газонепроницаемые оксидные плёнки, которые препятствуют коррозии.
  • Металлы с рыхлой оксидной плёнкой – Fe, Cu и другие – коррозионно неустойчивы. Особенно сильно ржавеет железо.

Различают химическую и электрохимическую коррозию.

Химическая коррозия сопровождается химическими реакциями. Как правило, химическая коррозия металлов происходит при действии на металл сухих газов, её также называют газовой.

При химической коррозии также возможны процессы:

Fe + 2HCl → FeCl2 + H2

2Fe + 3Cl2 → 2FeCl3

Как правило, такие процессы протекают в аппаратах химических производств.

Электрохимическая коррозия – это процесс разрушения металла, который сопровождается электрохимическими процессами. Как правило, электрохимическая коррозия протекает в присутствии воды и кислорода, либо в растворах электролитов.

В таких растворах на поверхности металла возникают процессы переноса электронов от металла к окислителю, которым является либо кислород, либо кислота, содержащаяся в растворе.

При этом электродами являются сам металл (например, железо) и содержащиеся в нем примеси (обычно менее активные металлы, например, олово).

В таком загрязнённом металле идёт перенос электронов от железа к олову, при этом железо (анод) растворяется, т.е. подвергается коррозии:

Fe –2e = Fe 2+

На поверхности олова (катод) идёт процесс восстановления водорода из воды или растворённого кислорода:

2H + + 2e → H2

O2 + 2H2O + 4e → 4OH –

Например, при контакте железа с оловом в растворе соляной кислоты происходят процессы:

Анод: Fe –2e → Fe 2+

Катод: 2H + + 2e → H2

Суммарная реакция: Fe + 2H + → H2 + Fe 2+

Если реакция проходит в атмосферных условиях в воде, в ней участвует кислород и происходят процессы:

Анод: Fe –2e → Fe 2+

Катод: O2 + 2H2O + 4e → 4OH –

Суммарная реакция:

Fe 2+ + 2OH Fe(OH)2

4Fe(OH)2 + O2+ 2H2O → 4Fe(OH)3

При этом образуется ржавчина.

Методы защиты от коррозии

Защитные покрытия

Защитные покрытия предотвращают контакт поверхности металла с окислителями.

  • Катодное покрытие – покрытие менее активным металлом (защищает металл только неповреждённое покрытие).
  • Покрытие краской, лаками, смазками.
  • Создание на поверхности некоторых металлов прочной оксидной плёнки химическим путём (анодирование алюминия, кипячение железа в фосфорной кислоте).

Создание сплавов, стойких к коррозии

Физические свойства сплавов могут существенно отличаться от свойств чистых металлов. Добавление некоторых металлов может приводить к повышению коррозионной стойкости сплава. Например, нержавеющая сталь, новые сплавы с большой коррозионной устойчивостью.

Изменение состава среды

Коррозия замедляется при добавлении в среду, окружающую металлическую конструкцию, ингибиторов коррозии. Ингибиторы коррозии — это вещества, подавляющие процессы коррозии.

Электрохимические методы защиты

Протекторная защита: при присоединении к металлической конструкции пластинок из более активного металла – протектора. В результате идёт разрушение протектора, а металлическая конструкция при этом не разрушается.

Источник

Конспекты лекций. Коррозия – разрушение метала под воздействием окружающей среды

Коррозия – разрушение метала под воздействием окружающей среды. В зависимости от характера физико-химического воздействия среды различают:

  1. химическую коррозию, обусловленную воздействием сухих газов и жидкостей, не являющихся электролитами;
  2. электролитическую коррозию, обусловленную воздействием электролитов.

Химическая коррозия – это чаще всего окисление металлов в газовой среде, усиливающееся при повышении температуры. Защита от окисления металлов основана на образовании защитной окисной плёнки на поверхности. Плёнка должна быть прочной, хорошо сцепляться с поверхностью металла, а главное быть сплошной. Материал будет стоек к химической коррозии, если объём образующегося окисла больше объёма металла его образовавшего. Это и есть условие сплошности плёнки окисла. Этим требованием удовлетворяет плёнка оксида хрома Cr2O3, образующая на поверхности сталей с высоким (более 12%) содержанием хрома.

Электрохимическая коррозия – наиболее распостранённый вид коррозии. Разнородные металлы (или участки различных фаз в сплавах), контактируя с электролитом, образуют гальванический элемент. Металл, имеющий более низкий потенциал (анод) отдаёт ионы в электролит и растворяется (корродирует). Чем ниже электродный потенциал металла по отношению к стандартному водородному потенциалу, тем ниже его коррозионная стойкость. Электрохимическая неоднородность поверхности сплава является причиной коррозии. Чем больше различия электродных потенциалов отдельных структурных состовляющих, тем более сплав склонен к коррозии. Более коррозионно-стойкими являются сплавы со структурой однородного твёрдого раствора.

Различные виды электрохимической коррозии представлены на рис.1.

Равномерная коррозия (а) развивается на поверхности чистых металлов или однородных твердых растворов.

В гетерофазных сплавах развивается местная коррозия (б), охватывающая отдельные участки поверхности с низким электродным потенциалом. К местной коррозии относятся питтинг или точечная коррозия , пятнистая, язвенная. Очаги такий коррозии являются концентраторами напряжения.

Читайте также:  Чем смыть сож с металла

В некоторых сплавах границы зерен, обогощенные примесями, имеют низкий электродный потенциал. В них развивается наиболее опасная межкристаллитная коррозия.

Устойчивость против коррозии повышается при введении в состав стали хрома, алюминия, кремния. Алюминий и кремний повышают хрупкость стали, их применяют редко.

Сталь, содержащая более 12% хрома устойчива в атмосфере, морской воде, ряде кислот, щелочей и солей. Примерами таких коррозионностойких сталей являются хромистые стали: 08Х13, 20Х13, 40Х13, 65Х13, 95Х18.

Низкоуглеродистые хромистые стали применяют для изготовления деталей конструкций, высокоуглеродистые (40Х13, 65Х13, 95Х18) для различных инструментов (ножи, скальпели). Помимо хрома коррозиостойкие стали могут содержать никель, эти стали называют хромоникелиевые и они весьма распростронены в качестве конструкционных (12Х18Н10Т, 12Х18Н9, 04Х18Н10, 10Х17Н13М2Т). Эти стали более коррозионностойки чем хромистые и сохроняют эту стойкость при нагреве в отличие от хромистых. Послезакалки хромоникелевые стали имеют структуру однородного аустенита, обеспечивающую их повышенную стойкость.

Рис. 1 Основные разновидности электрохимической коррозии (схемы) и их относительное влияние на прочность листового дуралюминия (графики):

а). равномерная коррозия; б). местная коррозия; в). межкристаллитная коррозия

  1. Жаростойкие и жаропрочные стали.

Способность материала сопротивляться химической коррозии при высоких температурах называется жаростойкостью.

Способность материала сопротивляться деформации и разрушению при высоких температурах называется жаропрочностью. Жаропрочность в сталях достигается легированием тугоплавкими элементами (хром, ванадий, вольфрам, молибден). Эти элементы затрудняют диффузионные процессы и повышают температуру рекристаллизации. Жаропрочностью обладают также хромоникелевые стали аустенитного класса (диффузия в плотноупакованной решетке ГЦК существенно затруднена). Примеры жаропрочных сталей: 12ХМФ. 08Х12ВНМФ, 12Х18Н10Т, 08Х18Н9.

  1. Инструментальные стали.

Общим для всех инструментальных сталей является повышенное содержание углерода, обеспечивающее их прочность, твердость, износостойкость. По назначению они делятся на стали для режущего инструмента, штамповочного и измерительного.

Стали для режущего инструмента различают по теплостойкости – способности сохранять твердость при нагреве: низкой теплостойкости (углеродистые и инструментальные стали У7 … У13) для инструмента, не испытывающего нагрева (Т

Источник

Коррозия металла — что это: виды и способы борьбы

«Коррозия» — термин, который известен нам как процесс самопроизвольного разрушения металла.

Ежегодно миллионы тонн металла под воздействием физико-химических и химических реакций, возникающих во время взаимодействия с окружающей средой, «съедаются» коррозией. Развитие саморазрушения может быть как частичным (местная коррозия), так и полным (сплошная коррозия), а все зависит от длительности и интенсивности разрушающего процесса. По типу коррозия подразделяется на химическую и электрохимическую.

Химическая коррозия обусловлена взаимодействием поверхности металлических материалов с коррозионно-активной средой. Данный процесс разрушения металла протекает в жидкостях и газах, которые, в свою очередь, не в состоянии проводить электрический ток. Из этого следует, что химическое саморазрушение подразделяется на газовую коррозию, где разрушение происходит именно под воздействием газов при высоких температурах, и коррозию в жидких неэлектролитах, которые бывают органического (нефть, бензин, керосин, различные спирты и т. п.) и неорганического происхождения (расплавленная сера, жидкий бром и т. п.).

Электрохимическая коррозия подразумевает собой разрушение металла при непосредственном контакте с электролитически проводящей окружающей средой. Для такого вида коррозии всегда требуется наличие электролита, с которым соприкасаются электроды. Также это могут быть два разных металла с разными окислительно-восстановительными свойствами, соприкасающиеся друг с другом и образующие гальваническую пару.

Гальваническая пара это не что иное, как пара проводников, соединенных вместе с целью обеспечения электрического контакта, возможно, изготовленных из разных металлов. Каждый металл имеет свой электродный потенциал. При воздействии электролита один возьмет на себя роль катода, а второй роль анода, и между ними будет происходить коррозионный процесс, по итогам которого катод будет разрушать анод. В качестве электролита вполне сойдет влага из воздуха для приведения в действие электродного потенциала гальванической пары, при этом пары уязвимы в разной степени: одни больше, а другие меньше.

Гальваническая пара

В химии есть определенный порядок металлов, где они выставлены в последовательности, характеризующей их электродный потенциал в растворах электролитов, и называется она — электрохимический ряд напряжений металлов. Эта гальваническая шкала (Схема 1) может наглядно помочь разобраться, почему следует использовать крепеж из однородного материала.

Схема 1. Гальваническая шкала

Итак, исходя из этой шкалы, мы получаем следующее: когда два металла находятся в непосредственном контакте, то тот, что левее, будет корродировать, а тот что правее, будет более инертно защищенным. Необходимо достигать минимальной разности потенциалов между двумя изделиями:

  • разница в 0,1 будет являться допустимо безопасной;
  • разница в 0,2 будет являться допустимой при выполнении некоторых условий:
    — контактная коррозия не будет влиять на сохранность изделия и на потерю его рабочей способности;
    — в сборочной единице специально предусмотрена электрохимическая защита одного изделия за счет коррозии другого.

Также темп коррозии будет находиться в зависимости от площади поверхности открытых металлов. При условиях, если деталь более инертна, чем крепеж, крепеж будет коррозировать более ускоренными темпами. Например, использование оцинкованной метизной продукции для соединения нержавеющих сталей приведет к ускоренному образованию коррозии на метизах и ухудшению их механических свойств.

Гальваническая пара

Защита от электрохимической коррозии; какой металл будет катодом, а какой анодом в гальванической паре; допустимые, недопустимые и ограниченно допустимые контакты металлов — регламентируются ГОСТ 9-005-72 «Электрохимическая коррозия, допустимость контактов металлов».

В Таблице 1 представлены справочные данные некоторых металлов для определения совместимости.

Читайте также:  Лондонская биржа металлов график работы

Таблица 1. Справочные данные некоторых металлов для определения совместимости

В данной таблице можно увидеть, что использование нержавеющей стали и металлических изделий с нанесением цинкового покрытия недопустимо и приведет к образованию коррозии, что уменьшит срок службы изделий.

В случае, если нет возможности исключить образование недопустимой гальванической пары, стоит выполнить дополнительные действия по уменьшению контактной коррозии с помощью следующих способов:

  • дополнительная установка неметаллических шайб, вставок или прокладок в местах соединений;
  • изолирование соединения от воздействия окружающей среды;
  • нанесение дополнительных металлических покрытий, совместимых между собой;
  • покраска поверхностей в местах соединений;
  • электрическая изоляция металлических изделий.

Данные процедуры стоит проводить, отталкиваясь от технических требований к изделию, от сроков и условий их эксплуатации и от экономической составляющей.

Пренебрежение требованиями к методам защиты от контактной коррозии может привести к поломке, потере работоспособности или разрушению изделий. Не исключено, что это приведет к дополнительным материальным затратам, нанесению морального или физического ущерба.

Источник: ООО «КМ-профиль», опубликовано в журнале «Электротехнический рынок» № 2 (98) 2021

Источник

Основы теории коррозии металлов и способы защиты от нее

Коррозия (от позднелатинского corrōsiōn «грызть, жевать») представляет собой постепенно развивающийся процесс поверхностного повреждения металлов, обладающих способностью активно реагировать с кислородом. Один из наглядных примеров этого явления – коррозия металла из-за образования оксида железа Fe2O3 или ржавчины.

Коррозия (от позднелатинского corrōsiōn «грызть, жевать») представляет собой постепенно развивающийся процесс поверхностного повреждения металлов, обладающих способностью активно реагировать с кислородом. Один из наглядных примеров этого явления – коррозия металла из-за образования оксида железа Fe2O3 или ржавчины. Характерно, что два остальных окисла железа – закись FeO и закись-окись Fe3O4 — обладают значительно меньшей корродирующей способностью, причём Fe3O4 при некоторых условиях может даже играть роль твёрдой смазки.

Теория коррозии предполагает, что для начала разрушения металла необходимо наличие четырёх основных компонентов:

Электрического соединения, которое существует между катодом и анодом.

Электролита или любой другой токопроводящей среды, облегчающей направленное перемещение ионов.

Обычное образование ржавчины на стали можно рассматривать как электрическую батарейку. Когда атомы металлов подвергаются воздействию окружающей среды, которая содержит кислород, металл производит электроны. Это действие можно локально ограничить, чтобы создать трещину или микроуглубление. С развитием процесса коррозия распространяется на прилегающую территорию, что приведет к общему ухудшению состояния поверхности. Ограниченная (точечная) коррозия способна вызвать усталость металла – снижение его прочностных характеристик, а имеющиеся коррозионные агенты, например, морская вода, могут привести к прогрессирующему росту трещины.

Теория коррозии утверждает также, что интенсификации поверхностного разрушения металла способствуют микроструктурные изменения, возникающие при повышенных температурах, в частности, при сварке. Это объясняется повышенными значениями энергии активации, из-за чего количество ионов, проводящих электрический ток, лавинообразно возрастает.

Определение коррозии

Коррозия — это постепенное разрушение объектов, обычно металлов, вызванное активной окружающей средой-электролитом и химической реакцией окисления.

Суть коррозионного процесса – наличие постоянно действующей анодной реакции. Она вызывается за счёт растворения металла, который генерирует электроны. Часть энергии активации дополнительно расходуется на другой процесс, называемый катодной реакцией. Эти два процесса уравновешивают произведенные заряды. Зоны, вызывающие эти процессы, могут быть расположены близко или далеко друг от друга, в зависимости от ситуации.

Электроны, генерируемые в процессе, должны потребляться посредством катодной реакции. Ионы водорода и электроны вступают в реакцию с образованием атомарного, а затем и газообразного водорода. Однако водород является сильнейшим восстановителем, поэтому дальнейшую коррозию можно предотвратить, создав на поверхности металла тонкую газовую плёнку. Она служит поляризатором, уменьшающим контакт металла с водой и уменьшающим коррозию. Таким образом, всё, что разрушает барьерную плёнку, увеличивает скорость коррозии.

Основными факторами, определяющими интенсивность процесса, являются:

Уровень возникающих механических и термических напряжений;

Характер протекающих химических реакций.

Коррозия сдерживает внедрение в производство новых металлических материалов и причиняет значительный ущерб экономике.

Виды коррозии металлов

Классификация всех коррозионных явлений может быть произведена по следующим параметрам:

По степени равномерности. Различают поверхностную коррозию, которая равномерно уменьшает толщину поверхности, и неравномерную коррозию – точечную или язвенную;

По интенсивности воздействия на металл. Например, избирательная коррозия разрушает только определённые структурные составляющие, а контактная воздействует на менее коррозионно стойкие («неблагородные») составляющие пар трения;

При межкристаллитной коррозии разрушение происходит по границам зёрен и распространяется вглубь металла.

Фреттинг-коррозия, когда два контактирующих между собой тела совершают относительно друг друга колебательные движения малой амплитуды (не более 100 мкм).

При одновременном воздействии растягивающих напряжений и агрессивной среды наблюдается коррозионное растрескивание межкристаллитного или транскристаллитного характера, а при наложении знакопеременных напряжений начинается коррозионно-усталостное разрушение. Защита металлов от коррозии, таким образом, предполагает также и одновременное уменьшение износа деталей.

Далее рассматриваются основные явления, которые происходят в повреждающихся зонах при различных видах коррозии.

Химическая

Химическая коррозия относится к постепенному разрушению поверхности металла из-за реакции поверхности с веществами во внешней среде. Она происходит в результате окисления металла кислотами с образованием оксидов.

Высокотемпературный вариант заключается в воздействии на металл сухих газов. Все металлы в сухом воздухе покрыты очень тонким (2…10 мкм) слоем оксидов. Этот слой образуется при очень высоких температурах, когда реакция с кислородом воздуха идёт без каких-либо ограничений. При комнатной температуре реакция останавливается, поскольку оксидная плёнка становится слишком тонкой. В случае, например, с алюминием, такая плёнка, состоящая из оксида Al2O3, эффективно защищает поверхность алюминиевой посуды, поскольку коррозионная стойкость чистого алюминия невысока.

Читайте также:  Определите объемную массу алюминиевого швеллера плотность металла 2700 кг м3

Химическая коррозия начинается в месте, где металл находится под давлением и изолирован от циркуляции воздуха. Это побуждает ионы металлов растворяться во влажной среде, что в конечном итоге ускоряет реакцию между ними и водой. В результате реакции образуются водные оксиды (известные при взаимодействии с железом как ржавчина) и свободные ионы.

Электрохимическая

Для моделирования процесса необходимо рассмотреть железную пластину, покрытую любым электропроводящим покрытием, например, оксидной окалиной, которая образовалась во время высокотемпературной обработки. При погружении пластины в раствор хлорида натрия, обнаруживается, что, если повредить целостность окалины, в этом месте ржавление железа пойдёт значительно быстрее. Электрохимическая коррозия наиболее достоверно объясняет ржавление железа в аэробных условиях.

Теория электрохимической коррозии предполагает наличие дополнительных химических реакций:

Fe → Fe ++ + 2e−, — анодная реакция;

2e− + O + H2O → 2OH− — катодная реакция.

Когда ионы металла растворяются, их заряд уравновешивается ионами хлорида, которые мигрируют в область атаки, притягиваясь образующимися ионами положительного заряда. Хлорид железа растворяется в воде, но это не создаёт препятствий для дальнейшей коррозии, поскольку раствор хлорида железа вследствие гидролиза очень кислый. По мере того, как ионы Fe ++ удаляются из этого места, они сталкиваются с гидроксильными ионами, которые либо присутствуют в воде естественным образом, либо образуются в результате катодной реакции. Результатом является образование и осаждение гидроксида железа Fe (OH)2. Далее, в присутствии растворённого кислорода, он быстро окисляется до оксигидроксида железа FeOOH.

Таким образом, при электрохимической коррозии происходят три реакции, причём в трёх разных местах. Анодная происходит в зонах потери металла, катодная – там, где растворённый в воде кислород может принимать электроны, а сама твёрдая окалина формируется в местах механических повреждений на поверхности изделия.

В последнее время выделяют ещё один вид коррозии – механохимическую, которая происходит в результате динамического взаимодействия контактирующих элементов окружающей среды в условиях высоких контактных давлений.

Методы защиты от коррозии

Ржавчина и другие коррозионные проявления могут приводить к проблемам с безопасностью, нарушать целостность производственного оборудования и расходных материалов. Даже плановое техническое обслуживание по удалению и устранению ржавчины увеличивает эксплуатационные затрат. Отработано ряд способов, используя которые, можно минимизировать коррозию.

Металлические покрытия

Эти методы предотвращения коррозии заключаются в погружении стали в расплав металла, электрический потенциал которого меньше, чем железа (чем больше разница, тем эффективнее покрытие).

Практическое применение находят гальванические покрытия цинком или оловом, а также диффузионные покрытия никелем, хромом, кремнием или алюминием. По сравнению с другими методами защиты от коррозии гальванизация известна более низкими начальными затратами, устойчивостью и универсальностью.

Поскольку расход металла-протектора довольно велик, преимущество получают технологии, отличающиеся экономичностью используемых компонентов и прочностью создаваемых покрытий. Первым в этом списке находится цинкование. Железо в стали вступает в реакцию с цинком, образуя прочное покрытие из сплава, которое служит защитой.

Неметаллические покрытия

Один из самых простых способов предотвратить коррозию — использовать защитные покрытия из неметаллов — краски, пластика, воска или порошка. Порошки, включая эпоксидную смолу, нейлон и уретан, наносятся на металлическую поверхность и нагреваются до стадии расплавления, образуя тонкую плёнку.

Краска действует как покрытие, защищающее металлическую поверхность от электрохимического заряда, который исходит от коррозионно опасных соединений. Обычно используют комбинацию различных слоёв краски, которые выполняют разные функции. Грунтовка действует как ингибитор, промежуточный слой увеличивает общую толщину краски, а финишный слой обеспечивает устойчивость к факторам окружающей среды.

Химические покрытия

Относятся к методам временной антикоррозионной защиты стали, например, во время пластического деформирования при повышенных температурах. Наибольшее распространение получили технологии фосфатирования и оксалатирования.

При фосфатировании поверхность покрывают сплошным слоем фосфатных солей железа и марганца, а при оксалатировании – водорастворимыми солями щавелевой кислоты. Фосфатирование используется для обработки нелегированных сталей, оксалатирование – легированных. Покрытие прочно сцепляется с поверхностью, способствуя снижению трения и уменьшению износа инструмента. После окончания штамповки покрытие удаляют.

Изменение состава технического металла и коррозионной среды

Заключается в специальном легировании стали элементами, повышающими её коррозионную стойкость. Если это возможно, то в механическую систему, которая работает в условиях повышенной температуры и влажности, вводят смазку, содержащую противокоррозионные компоненты (восстановители).

Элементом, который положительно влияет на коррозионную стойкость стали, является хром. Для реализации этого эффекта сталь должна содержать не менее 13% хрома. Каждые дополнительные 5% хрома обеспечивают еще лучшую коррозионную стойкость.

Никель — второй важный элемент для улучшения коррозионной стойкости стали, причём добавка никеля приводит также к стабилизации аустенита. Третьим важным элементом повышения коррозионной стойкости является молибден. Однако его добавки повышают коррозионную стойкость только нержавеющих сталей с достаточным содержанием хрома и никеля.

Электрохимическая защита

Процесс коррозии, которая возникает при контакте двух разных металлов, находящихся в электролите, можно остановить использованием системы катодной защиты. Для реализации метода активные центры на поверхности металла необходимо преобразовать в пассивные путем предоставления электронов из другого источника (обычно используют аноды, прикрепленные к поверхности). Металлы, используемые для анодов — алюминий, магний или цинк.

Катодная защита очень эффективна в бытовой технике, однако аноды необходимо часто проверять, что увеличивает расходы на техническое обслуживание.

Источник

Поделиться с друзьями
Металл
Adblock
detector