Влияние ионов тяжелых металлов на активность ферментов

Влияние ионов тяжелых металлов на активность ферментов

Цель исследования

Изучить пространственную изменчивость ферментативной активности почв городских территорий, загрязненных тяжелыми металлами, для оценки экологического состояния почвы.

Объекты и методы исследования

Для установления характера зависимости ферментативной активности почвы от уровня загрязнения тяжелыми металлами в лабораторных условиях был поставлен опыт в вегетационных сосудах. ТМ вносили в почву в составе промышленных отходов — осадков нейтрализации гальваностоков, полученных с одного из приборостроительных заводов Владимирской области, в количестве 3,5 кг/м 2 .

Почвенные пробы для анализа отбирали с участков на глубинах (см) от 0-15, 15-30, 30-45 тростьевым буром. С каждого вегетационного сосуда на каждой из глубин отбиралось по три объединенные пробы. Отбор и анализ проб проводили через 3 месяца после внесения гальваношлама. Для постановки опытов в лабораторных условиях использовалась дерново-подзолистая почва, отобранная с реперного участка Владимирской области.

В почвенных образцах определяли следующие показатели: целлюлозолитическую активность (аппликационным методом в чашках Петри путем учета остаточного количества нерасщепленной целлюлозы [1]); каталазную активность и дыхание почвы (газометрическим методом [5]), уреазную активность (фотоколориметрически [7]), нитрифицирующую активность (потенциометрическим методом). Определение валового содержания ТМ проводили рентгеноспектральным флуоресцентным методом на приборе «Spectroskan-МАКС-G».

Результаты исследования и их обсуждение

Для исследования влияния ТМ на показатели ферментативной активности, был проведен анализ почвы, который показал, что после внесения ГШ в дозе 3,5 кг/м 2 валовое содержание ТМ в корнеобитаемом слое почвы стало превышать его концентрацию на незагрязненной почве и стало характеризоваться как «очень высокое» (табл. 1).

Таблица 1

Содержание тяжелых металлов в исследуемой почве, после внесения ГШ в количестве 3,5 кг/м 2

Источник

Опыт «Влияние тяжелых металлов на ферменты»

Онлайн-конференция

«Современная профориентация педагогов
и родителей, перспективы рынка труда
и особенности личности подростка»

Свидетельство и скидка на обучение каждому участнику

В результате аварии на Чернобыльской АЭС 26 апреля 1986 года территория Республики Беларусь была загрязнена радиоактивными элементами. На территории нашей страны осели такие радиоактивные элементы, как плутоний-239, америция-241 стронций – 90, йод- 131.

Загрязнение радионуклидами наземных и водных экосистем приводит к вовлечению этих элементов в трофические (пищевые) цепи. Пищевые цепи представляют собой ряд последовательных этапов, по которым осуществляется трансформирование вещества и энергии в экосистеме. Все живые организмы связаны между собой, поскольку они являются объектами питания. При загрязнении одной из цепей радиоактивными веществами осуществляется миграция и последовательное накопление нуклидов в других элементах трофической цепи. Попадая в организм человека радионуклиды, вызывают такие заболевания, как рак костей, лейкемию, нарушают структуру ДНК, влияют на активность ферментов и т.д. Влияние катионов тяжелых металлов на активность фермента

Поступая в биосферу, тяжелые металлы активно включаются в различные миграционные циклы эко- и геосистем и представляют потенциальную опасность для всего живого. Соединения тяжелых металлов способны сохранять токсичность практически бесконечно, так как при их превращении металл остается без изменений. Катионы металлов, поступающие в организм человека или животного из окружающей среды, образуют прочные связи с карбоксил-анионами и часто вызывают разрывы ионных взаимодействий между ионизированными боковыми радикалами аминокислотных остатков в глобуле, что приводит к потере активной структуры белка. Они снимают электрическую поляризацию белка, уменьшая его растворимость. Вследствие этого находящийся в растворе белок выпадает в осадок. Такие токсичные элементы, как Be, Cd, Sr, Cs, легко могут атаковать белки-ферменты, конкурируя с биогенными элементами и вытесняя их. Например, очень токсичный ион Cd 2+ конкурирует с ионом Zn 2+ , выполняющим в металлсодержащих ферментах роль кислоты Льюиса и создающим локальный положительный заряд около активного центра фермента. Замещение Zn 2+ на Cd 2+ приводит к дезактивации ферментов. Свинец и все его соединения ядовиты. Попадая в клетки, свинец, как и многие другие тяжелые металлы, дезактивирует ферменты, взаимодействуя с SH — группами белков — составляющих ферментов. Кадмий считается токсичнее свинца и отнесен Всемирной организацией здравоохранения к числу наиболее опасных для человека веществ. Не менее опасны эти металлы и для растений.

Поскольку радиоактивные элементы (стронций, плутоний, америций), это тяжелые металлы, то можно наглядно показать некоторые особенности их влияния на организм, на примере свинца и кадмия.

Данная работа может использоваться не только на уроках химии для развития общеучебных компетенций, познавательного интереса, но и может являться структурным компонентом исследовательской работы. Данное исследование можно использовать как демонстрационный опыт на уроке биологии, доказывающий, что грибы и ягоды, растущие вблизи дорог категорически запрещается употреблять в пищу человеком. Необходимость проверки грибов и ягод на наличие в них радиоактивных элементов.

Для изучения влияния тяжелых металлов на ферменты можно использовать уреазу. Данный фермент можно получить из растительных организмов. Наибольшей активностью обладает уреаза содержащаяся в семенах бобовых Для проведения эксперимента можно использовать семечки кабачка, в них активность уреазы сохраняется в течение одного года. Уреаза катализирует гидролиз мочевины с образованием оксида углерода(IV) и аммиака:

Читайте также:  Лоуренсий это металл или нет

Метод определения активности уреазы основан на тестировании выделяющегося аммиака фенолфталеином. Наглядность данного опыта обеспечивается быстрым появлением интенсивной розовой окраски индикатора.

Реактивы и оборудование: ступка с пестиком, пробирки, пипетки, 1 % раствор мочевины, 0,02 % спиртовой раствор фенолфталеина, дистиллированная вода, экстракт фермента, рабочие растворы токсикантов.

Определение активности уреазы

Приготовление экстракта уреазы:

Очистить 3-4 кабачковых семечки от кожуры и растереть ядра в ступке с 10 мл воды. Данный экстракт слить в пробирку и использовать для проведения опытов.

Для опытов взять 2 мл суспензии ферментативного препарата. В пробирку добавить 1 мл воды или токсиканта (солей тяжелых металлов), встряхнуть и добавить 2 мл раствора мочевины. Следует подчеркнуть, что необходимо добавлять реагенты в той последовательности, о которой сказано выше. Затем в пробирку добавить 2-3 капли спиртового раствора фенолфталеина, оставить при комнатной температуре на 3-5 мин. По интенсивности появляющейся окраски фенолфталеина судят об ингибировании фермента. Если окраска появляется, значит, уреаза сохраняет свою активность, так как выделяется аммиак, а если окраска индикатора не появляется, значит, реагент ингибирует фермент. В опытах используются различные концентрации токсикантов. Готовить растворы солей и фенола необходимо с учетом разбавления при проведении опыта. Токсиканты в одних концентрациях ингибируют фермент, в других нет. Исследовательский компонент эксперимента состоит в нахождении такой концентрации фактора, при которой начинается ингибирование уреазы.

Опыт. Изучение влияния солей тяжелых металлов на активность уреазы.

В качестве токсиканта надо использовать растворы ацетатa свинца Pb(CH 3 COO) 2 и нитрата кадмия Cd(NO 3 ) 2 в различных концентрациях (10 -6 , 10 -7 , 10 -8 , 10 -9 моль/л). Эксперимент следует проводить по вышеприведенной методике.

Источник

Исследовательская работа «Влияние тяжёлых металлов на активность каталазы»

Онлайн-конференция

«Современная профориентация педагогов
и родителей, перспективы рынка труда
и особенности личности подростка»

Свидетельство и скидка на обучение каждому участнику

Муниципальное общеобразовательное учреждение

«Городская гимназия №1»

РОССИЙСКАЯ НАУЧНО-СОЦИАЛЬНАЯ ПРОГРАММА

ДЛЯ МОЛОДЕЖИ И ШКОЛЬНИКОВ

«Влияние тяжелых металлов на активность каталазы»

Исследовательская работа на городскую

научно-практическую конференцию «За страницами твоего учебника» в рамках программы

Авторы: Гасич Александр, Россия,

г. Усть-Илимск гимназия №1, 11 класс «А».

Руководитель: учитель Громенко Т.В., городской

гимназии №1, в Усть-Илимске

Глава 1. Анализ литературных источников:

1.1 Биологическая роль ферментов в клетке ……………………… 4с.

1.2 Загрязнение окружающей среды тяжёлыми металлами ………5с.

Глава 2. Методика проведения исследования ……………………………. 8с.

Глава 1. Введение

Актуальность. В условиях интенсивного антропогенного загрязнения окружающей среды, вопрос о влиянии загрязняющих веществ на живые организмы, является крайне актуальным. К отрицательным относят все виды воздействия на биосферу, создаваемых человеком и угнетающих природу. Небывалые по мощности и разнообразию негативные антропогенные воздействия, особенно резко стали проявляться во второй половине 20 века. Под их влиянием естественная биота экосистем перестала служить гарантом устойчивости биосферы.

Источниками антропогенного загрязнения, наиболее опасного для популяций любых организмов, являются промышленные предприятия (химические, металлургические, целлюлозно-бумажные, строительных материалов и др.), транспорт, теплоэнергетика, сельскохозяйственное производство. Количество загрязнителей (поллютантов) постоянно растёт по мере развития новых технологических процессов. Суммарный выброс в окружающую среду загрязнителей в России составил 41,8млн.т (Коробкин В.И. Передельский Л.В.,2004). Специалисты считают, что в локальном и глобальном масштабах «приоритетными» являются следующие загрязнители: диоксид серы, канцерогенные вещества (бензпирен), нефтепродукты, хлорорганические пестициды, оксид углерода, оксиды азота, тяжёлые металлы.

Известно, что металлы играют важную роль в жизнедеятельности организмов. Они входят в состав клеток в виде макроэлементов (кальций, натрий, калий, железо, магний) и микроэлементов (кобальт, медь, цинк¸ молибден, марганец, никель). Металлы участвуют в структурировании белков, нуклеиновых кислот, активных центров ферментов, активизируют биологические реакции, участвуют в ионной проницаемости мембран.

Вместе с тем в условиях интенсивного воздействия человека на окружающую среду (добыча руд, минералов, промышленное и сельскохозяйственное производство, развитие автотранспорта) природная среда интенсивно загрязняется как биогенными, так и чужеродными металлами.

Наибольшую опасность среди них представляют тяжелые металлы: ртуть, свинец, кадмий, медь, цинк. При избыточном поступлении в организм тяжелые металлы вызывают глубокую необратимую денатурацию белков, образуя нерастворимые соли комплексного характера по анионным центром радикалов аминокислот, например SH – и COOH – группам. При этом подавляется действие большинства ферментов, поскольку именно радикалы аминокислот участвуют в формировании их активных центров.

Цель экологического эксперимента: Выявить влияние тяжелых металлов на активность фермента каталаза.

Основные задачи эксперимента:

Ознакомиться с методикой эксперимента по исследованию активности каталазы по литературным источникам.

Провести практическую часть исследования в соответствии с разработанным планом и методикой.

Изучить по литературным источникам о влиянии антропогенного загрязнения на живые организмы.

Определить концентрацию токсикантов, которая оказывает угнетающее действие на активность фермента.

Проанализировать полученные результаты эксперимента, сравнить токсический эффект ионов свинца и меди на уровне общей активности фермента.

Методы исследования: анализ литературных источников, эксперим

Глава 1. Анализ литературных источников

1.1 Биологическая роль ферментов в клетках

Ферментами называются белковые вещества, ускоряющие жизненно важные химические реакции в клетках организмов. Являясь катализаторами, они образуют с исходными веществами неустойчивые промежуточные соединения: эти соединения, распадаясь, дают конечный продукт данной реакции и освобождают ферменты. Известно много ферментов и каждый из них ускоряет только одну какую-либо реакцию или группу однотипных реакций. Эту особенность ферментов называют специфичностью или селективностью (избирательностью) действия. Направленность их действия позволяет организму быстро и точно выполнять сложную химическую работу по перестройке молекул пищевых веществ – в нужные ему соединения.

Читайте также:  Чем приклеить фольгоизолон к металлу

Уже во рту во время пережевывания пищи под влиянием фермента амилазы сложные сахара начинают разлагаться на простые вещества. Эта работа в дальнейшем будет продолжена в кишечнике ферментами — карбогидразами. В желудке и кишечнике белки пищи подвергаются разложению с участием пепсина, трипсина, химотрипсина. Жиры разлагаются на глицерин и карбоновые кислоты под влиянием ферментов – липаз. Все эти реакции протекают по одному принципу: разрывается определенная химическая связь в молекуле белка, углевода или жира. Освободившиеся валентности используются для присоединения групп ОН — и иона Н + из молекул воды. Происходит процесс гидролиза. Для молекулы белка эту реакцию можно представить так:

Известны ферменты, которые оказывают иное действие на молекулы. Некоторые из них ускоряют окислительно-восстановительные реакции: они способствуют переносу электрона от одной молекулы (окисляемой) к другой (восстанавливаемой). Существуют ферменты, соединяющие молекулы друг с другом, ферменты, которые переносят большие и сложные группы атомов от одной молекулы к другой. Располагая богатым набором ферментов – катализаторов, клетка разлагает молекулы пищевых белков, жиров, углеводов на небольшие фрагменты и из них заново строит белковые и иные молекулы, которые будут точно соответствовать потребностям организма. Русский физиолог И.П. Павлов назвал ферменты — носителями жизни.

В последние годы широко используются иммобилизованные (неподвижные) ферменты. Для ускорения нужной реакции их закрепляют на поверхности инертного «носителя». В качестве его обычно используют оксид кремня ( IV ) или полимерные материалы. Через эту массу фильтруют исходные вещества. Ферменты быстро и точно производит высокоспецифичную и химическую работу, в результате которой получаются продукты, почти не содержащие посторонних соединений.

Каталаза относится к классу оксидоредуктаз. Она содержится в животных и растительных тканях и включает железо в составе геминовой простатической группы. Фермент имеет белковую природу и является катализатором в клетке. Каталаза проявляет очень высокую активность: одна молекула фермента разлагает до 5 млн. молекул перекиси водорода в минуту при 0 0 С.

2Н2О22О + О2

Это жизненно важная реакция, так как пероксид водорода (Н2О2) образуется в результате обмена веществ в клетке и оказывает на клетку вредное действие.

Максимальную активность каталаза обнаруживает в интервале от 0 0 до 10 0 С. Оптимальные значения РН действия лежит в пределах 6,0 – 8,0. Активность фермента определяется строением белковой молекулы. Определенное пространственное расположение остатков аминокислот, образующих цепеобразную молекулу белка, создает условия для протекания катализируемой ферментом реакции. Длинная цепочка остатков аминокислот свернута в сложный клубок так, что аминокислоты, расположенные в цепи далеко друг от друга, могут оказаться соседями. Некоторые из возникших таким путем группировок, остатков аминокислот проявляют каталитические свойства и образуют активный центр фермента. Ферменты для проявления активности нуждаются в веществах небелковой природы – кофакторах. Кофактором может быть ион металла (цинк, кальций, марганец) или молекула органического соединения (кофермент). Иногда для действия фермента бывает необходимо присутствие, как ионов металла, так и коферментов. В отдельных случаях кофермент очень прочно соединен с белком, что и наблюдается у каталазы. У каталазы кофермент представляет собой комплексное соединение железа (гемм). В некоторых ферментах коферменты – это вещества, близкие по строению молекулы к витаминам. Витамины, таким образом, являются предшественниками коферментов. Из витамина В1 (тиамин) в клетках образуется тиамин пирофосфат – это кофермент важного фермента (декарбоксилаза), который превращает пировиноградную кислоту в оксид углерода ( IV ) и ацетальдегид. Из витамина В2 получают коферменты флавиновых ферментов – одну из стадий окисления пищевых веществ. Из витамина В12 образуются коферменты, необходимые при образовании клеток крови.

1.2 Загрязнение окружающей среды тяжёлыми металлами

Загрязнение окружающей среды тяжелыми металлами, а особенно свинцом приобрело огромные масштабы, особенно в больших городах и вдоль автострад в связи с содержанием в бензине антидетонаторной добавки – тетраэтилсвинца. Вместе с выхлопными газами автомобилей он выбрасывается в атмосферу. Вследствие этого за последние десятилетия уровень свинца в крови людей увеличился. Накопление свинца в организме приводит к раковым заболеваниям, так как, в несколько раз усиливает действие канцерогенных веществ (диоксины, полициклические углеводороды) в организме. В этом проявляется взаимодействие различных ксенобиотиков в окружающей среде либо в организме с образованием ещё более ядовитых продуктов.

Так, соединения меди весьма токсичны для представителей животного и растительного мира. Избыток ионов меди в человеческом организме вызывает заболевания нервной системы, печени и почек, гастриты, язвенную болезнь желудка. У работающих с медными порошками более 5 лет, снижается жизненная ёмкость лёгких, резко увеличивается содержание гемоглобина, и число эритроцитов в крови, уплотняются корни лёгких, воспаляются дёсна.

Масштабы отравления медью наиболее опасны в промышленных меднодобывающих районах, где на 1т добытой меди приходится 2 т пыли, содержащей 15% меди, 60% — оксидов железа, по 4% мышьяка, ртути, цинка, свинца. При избытке меди в организме происходит угнетение многих ферментов, разрушаются железосодержащие белки (гемоглобин, ферритин и др.) в результате замещения железа на медь, вследствие отравления медью, возникает глобинонурия, желтуха, накапливается метгемоглобин (потемнение крови).

Оксиды меди и соли вызывают аллергию, изъязвление роговицы, дерматиты.

Загрязнение супесчаной почвы (5мг/кг) может привести к угнетению активности нитрифицирующих бактерий. Медь заметно задерживает минерализацию азота.

Читайте также:  Сверление металла на станке чпу

В то же время, медь, как и железо, играет важную роль в процессе кроветворения и поддержании нормального состава крови. Недостаток меди в почве может привести к заболеванию животных анемией, а у растений вызвать задержку образования хлорофилла, понизить содержание в них витаминов.

Токсичность ртути, свинца и других тяжелых металлов усиливается в результате их преобразования в окружающей среде в алкильные производные.

С6Н 5 Hq CH 3 Hq

Hq Hq 2+ ( CH 3) Hq

Метил и фенил-ртуть вследствие своей лиофильности очень легко проникают в организм. Таким образом, тяжелые металлы, попавшие в окружающую среду, необратимо разрушают белки, в том числе и ферменты, пагубно влияют на здоровье человека, вызывая тяжелые заболевания.

Фенилртуть Метилртуть

Ртуть отличается широким спектром и большим разнообразием клинических проявлений токсического действия. В основе механизма действия ртути лежит блокада биологически активных групп белковой молекулы. При отравлениях ртутью отмечается головная боль, общая слабость, боли при глотании, повышенная температура, боли в животе, признаки поражения почек. Известны смертельные случаи при отравлении парами ртути. У рабочих производств отмечаются неврастенический синдром, нарушение психической сферы (повышенная раздражимость, эмоциональная неустойчивость, утомляемость, пониженная умственная работоспособность). Снижается количество гемоглобина и число эритроцитов, кровоточивость дёсен, набухание лимфатических и слюнных желез, воспаление толстого кишечника, язва желудка и двенадцатиперстной кишки, некротические изменения в почках.

Несмотря на то, что дефицит лития в человеческом организме приводит к психическим расстройствам, при повышенной концентрации он токсичен. Так, избыток лития вызывает общую заторможенность, нарушение дыхания и сердечного ритма, слабость, сонливость, потерю аппетита, жажду, расстройство зрения, а также дерматит лица и рук.

Следующий за литием бериллий принадлежит к числу наиболее токсичных металлов (для сравнения приведем ПДК бериллия и ртути в воздухе производственных помещений, составляющие 0,001 и 0,01 мг/м 3 , соответственно). Бериллий и его соединения обладают аллергическим и канцерогенным действием, раздражают кожу и слизистые оболочки, вызывают дерматозы, конъюнктивиты, назофарингит, заболевания легких и бронхов – трахеобронхит, пневмонию и опухали легких. Заболевания могут возникнуть через 10-15 лет после прекращения контакта с бериллием. Металлы, в сравнительно высоких концентрациях отрицательно влияющие на жизнедеятельные процессы, в малых концентрациях абсолютно необходимы для нормального функционирования различных организмов, т.е. относятся к биологически активным элементам.

Цинк менее токсичен, чем медь, однако его избыток в организме может привести к понижению концентрации кальция в крови и костной ткани. Присутствие цинка в воздухе производственных помещений в виде пыли иногда вызывает заболевание дыхательных путей, называемое «литейной лихорадкой». С другой стороны, цинк – важный микроэлемент: он входит в состав инсулина (гормона поджелудочной железы), участвует в переносе углекислого газа кровью позвоночных и, что особенно важно, стимулирует рост растений.

Многочисленные данные свидетельствуют о том, что токсичность тяжелых металлов находится в непосредственной связи с их химической формой существования, с конкретной «химической упаковкой» металла. Общеизвестно, например, что соединения Cr 6+ значительно более токсичны, чем соединения Cr 3+ , что находит отражение в значениях их ПДК в питьевой воде – 0,05 и 0,5 мг/л соответственно.

Никель относится к тяжелым металлам с умеренной токсичностью (ПДК Ni 2+ в питьевой воде составляет 0,1 мг/л). Аллергическое действие металлического никеля проявляется только при продолжительном контакте кожи человека с декоративными никелевыми покрытиями (корпуса и браслеты часов, оправы очков). В то же время, летучий тетракарбонил никеля Ni ( CO )4 (ПДК в воздухе производственных помещений 0,0005 мг/м 3 ) – одно из наиболее ядовитых веществ, известных человеку (в свое время это соединение состояло в списках боевых отравляющих веществ ряда держав).

Кадмий относится к редким, рассеянным элементам: он содержится в виде изоморфной примеси во многих минералах и всегда в минералах цинка. Поступая в водоёмы, растворимый кадмий осаждается и накапливается в донных осадках. Он может находиться в почве в виде комплексных соединений (цианиды). Резко выражено загрязнение кадмием водоёмов и почвы в районах размещения металлургических комбинатов, производств красителей, кадмий — никелевых аккумуляторов, минеральных удобрений. Кадмий снижает активность пищеварительных ферментов – трипсина, пепсина, изменяется каталазную активность крови и тканей печени, угнетает синтез гликогена в печени. Вдыхание паров кадмия в концентрации 1мг/м. куб.в течение 8 часов рабочей смены приводит к токсической пневмонии, а затем к отёку лёгких. При этом развивается хронический ринит и фарингит, раздражение гортани, жжение в носу, Носовые кровотечения, образование язв в носовой полости. При случайном отравлении сульфатом кадмия смерть у пострадавшей наступила через 30 часов при нарастании сердечно – сосудистой недостаточности, отёке лёгких.

В Японии была обнаружена болезнь «итай – итай», при которой отмечалась декальцификация скелета, особенно у пожилых людей. Причиной явилось интенсивное загрязнение рисовых полей сточными водами горнометаллургических предприятий. Болезнь протекала с деформацией скелета, снижением роста, болями в пояснице, мышцах ног, переломами рёбер при кашле. Развивалась анемия, поражение почек, снижалось содержание в крови железа, кальция, фосфора.

Работающие в контакте с кадмием часто умирают от рака лёгкого и простаты. Исследования показывают, что у рабочих производства кадмиево — никелевых аккумуляторов (США) при стаже работы 5 лет и концентрациях кадмия в воздухе 1 мг/м.куб оказалась очень высокая онкозаболеваемость.

Источник

Поделиться с друзьями
Металл