Условия восстановления оксидов металлов

Химические свойства основных оксидов

Химические свойства основных оксидов

Подробно про оксиды, их классификацию и способы получения можно прочитать здесь.

1. Взаимодействие с водой. С водой способны реагировать только основные оксиды, которым соответствуют растворимые гидроксиды (щелочи). Щелочи образуют щелочные металлы (литий, натрий, калий, рубидий и цезий) и щелочно-земельные (кальций, стронций, барий). Оксиды остальных металлов с водой химически не реагируют. Оксид магния реагирует с водой при кипячении.

CuO + H2O ≠ (реакция не идет, т.к. Cu(OH)2 — нерастворимый гидроксид)

2. Взаимодействие с кислотными оксидами и кислотами. При взаимодействии основным оксидов с кислотами образуется соль этой кислоты и вода. При взаимодействии основного оксида и кислотного образуется соль:

основный оксид + кислота = соль + вода

основный оксид + кислотный оксид = соль

При взаимодействии основных оксидов с кислотами и их оксидами работает правило:

Хотя бы одному из реагентов должен соответствовать сильный гидроксид (щелочь или сильная кислота).

Иными словами, основные оксиды, которым соответствуют щелочи, реагируют со всеми кислотными оксидами и их кислотами. Основные оксиды, которым соответствуют нерастворимые гидроксиды, реагируют только с сильными кислотами и их оксидами (N2O5, NO2, SO3 и т.д.).

Основные оксиды, которым соответствуют щелочи Основные оксиды, которым соответствуют нерастворимые основания
Реагируют со всеми кислотами и их оксидами Реагируют только с сильными кислотами и их оксидами
Na2O + SO2 → Na2SO3 CuO + N2O5 → Cu(NO3)2

3. Взаимодействие с амфотерными оксидами и гидроксидами.

При взаимодействии основных оксидов с амфотерными образуются соли:

основный оксид + амфотерный оксид = соль

С амфотерными оксидами при сплавлении взаимодействуют только основные оксиды, которым соответствуют щелочи . При этом образуется соль. Металл в соли берется из более основного оксида, кислотный остаток — из более кислотного. В данном случае амфотерный оксид образует кислотный остаток.

CuO + Al2O3 (реакция не идет, т.к. Cu(OH)2 — нерастворимый гидроксид)

(чтобы определить кислотный остаток, к формуле амфотерного или кислотного оксида добавляем молекулу воды: Al2O3 + H2O = H2Al2O4 и делим получившиеся индексы пополам, если степень окисления элемента нечетная: HAlO2. Получается алюминат-ион AlO2 — . Заряд иона легко определить по числу присоединенных атомов водорода — если атом водорода 1, то заряд аниона будет -1, если 2 водорода, то -2 и т.д.).

Амфотерные гидроксиды при нагревании разлагаются, поэтому реагировать с основными оксидами фактически не могут.

4. Взаимодействие оксидов металлов с восстановителями.

При оценке окислительно-восстановительной активности металлов и их ионов можно использовать электрохимический ряд напряжений металлов:

Восстановительные свойства (способность отдавать электроны) у простых веществ-металлов здесь увеличиваются справа налево, окислительные свойства ионов металлов — увеличиваются наоборот, слева направо. При этом некоторые ионы металлов в промежуточных степенях окисления могут проявлять также восстановительные свойства (например ион Fe 2+ можно окислить до иона Fe 3+ ).

Более подробно про окислительно-восстановительные реакции можно прочитать здесь.

Таким образом, ионы некоторых металлов — окислители (чем правее в ряду напряжений, тем сильнее). При взаимодействии с восстановителями металлы переходят в степень окисления 0.

4.1. Восстановление углем или угарным газом.

Углерод (уголь) восстанавливает из оксидов до простых веществ только металлы, расположенные в ряду активности после алюминия. Реакция протекает только при нагревании.

FeO + C = Fe + CO

Активные металлы, расположенные в ряду активности левее алюминия, активно взаимодействуют с углеродом, поэтому при взаимодействии их оксидов с углеродом образуются карбиды и угарный газ:

CaO + 3C = CaC2 + CO

Угарный газ также восстанавливает из оксидов только металлы, расположенные после алюминия в электрохимическом ряду:

CuO + CO = Cu + CO2

4.2. Восстановление водородом .

Водород восстанавливает из оксидов только металлы, расположенные в ряду активности правее алюминия. Реакция с водородом протекает только в жестких условиях – под давлением и при нагревании.

CuO + H2 = Cu + H2O

4.3. Восстановление более активными металлами (в расплаве или растворе, в зависимости от металла)

При этом более активные металлы вытесняют менее активные. То есть добавляемый к оксиду металл должен быть расположен левее в ряду активности, чем металл из оксида. Реакции, как правило, протекают при нагревании.

Например , оксид цинка взаимодействует с алюминием:

3ZnO + 2Al = Al2O3 + 3Zn

но не взаимодействует с медью:

Читайте также:  Crossout как фармить металлолом 2021

ZnO + Cu ≠

Восстановление металлов из оксидов с помощью других металлов — это очень распространенный процесс. Часто для восстановления металлов применяют алюминий и магний. А вот щелочные металлы для этого не очень подходят – они слишком химически активны, что создает сложности при работе с ними.

Алюмотермия – это восстановление металлов из оксидов алюминием.

Например : алюминий восстанавливает оксид меди (II) из оксида:

3CuO + 2Al = Al2O3 + 3Cu

Магниетермия – это восстановление металлов из оксидов магнием.

CuO + Mg = Cu + MgO

Железо можно вытеснить из оксида с помощью алюминия:

При алюмотермии образуется очень чистый, свободный от примесей углерода металл.

4.4. Восстановление аммиаком.

Аммиаком можно восстанавливать только оксиды неактивных металлов. Реакция протекает только при высокой температуре.

Например , аммиак восстанавливает оксид меди (II):

3CuO + 2NH3 = 3Cu + 3H2O + N2

5. Взаимодействие оксидов металлов с окислителями.

Под действием окислителей некоторые основные оксиды (в которых металлы могут повышать степень окисления, например Fe 2+ , Cr 2+ , Mn 2+ и др.) могут выступать в качестве восстановителей.

Например , оксид железа (II) можно окислить кислородом до оксида железа (III):

Источник

Условия восстановления оксидов металлов

6.3 Условия восстановления различных оксидов

Реакция (6.6) находится в состоянии термодинамического равновесия, если выполняется условие . Для реакции горения оксида углерода

Из уравнения (6.11) видно, что, изменяя содержание СО и СО2, можно получить газовую фазу, которая будет восстановительной для любого оксида.

При неизменной температуре увеличение прочности оксида приводит к изменению состава равновесного газа в направлении уменьшения концентрации окислителя (СО2) и увеличения концентрации восстановителя (СО).

В зависимости от прочности оксиды принято подразделять на следующие группы:

    К легковосстановимым относят оксиды, которые являются менее прочными, чем низший оксид железа FeO. К их числу относят Cu2O, NiO, CoO, Fe2O3, Mn2O3, MnO2 и др. Реакции восстановления оксидов этой группы являются практически необратимыми, экзотермическими реакциями. Константы равновесия реакции (6.6) для этих оксидов очень велики, а состав равновесной газовой фазы приближается к 100% СО2 (рисунок 6.2).

Рисунок 6.2 – Зависимость состава равновесной газовой фазы от температуры для реакций восстановления различных оксидов оксидом углерода

  • Ко второй группе относят оксиды близкие по прочности к FeO. К их числу относят Fe3O4, Mn3O4, WO2, MoO2 и др. Реакции восстановления оксидов этой группы являются обратимыми, слабыми экзотермическими или слабыми эндотермическими реакциями. Для этих оксидов константы равновесия реакции (6.6) близки к единице, а равновесной газовой фазе присутствуют соизмеримые количества СО и СО2.
  • К трудно восстановимым относят оксиды, которые являются значительно более прочными, чем FeO. К их числу относят MnO, SiO2, Al2O3, CaO, MgO и др. Реакции восстановления оксидов этой группы являются эндотермическими. Для этих оксидов константы равновесия реакции (6.6) очень малы, а состав равновесной газовой фазы приближается к 100% СО. Например, для восстановления оксида MnO при 1000К содержание СО2 в газовой фазе не должно превышать 7*10 -6 %.
  • Источник

    Термодинамика процессов восстановления

    Восстановительные процессы (восстановление какого-либо элемента это процесс, связанный с присоединением к его атому электрона) в цветной металлургии распространены достаточно широко. К ним можно отнести: шахтную плавку свинцовых агломератов и окисленных никелевых руд, фьюмингование шлаков, восстановление окислов в вельц-печах, восстановление закиси меди в ходе огневого рафинирования, получение редких и радиоактивных металлов методами металлотермии, электролиз алюминия из солевых расплавов и т.д. Объектами восстановления служат окислы и их твердые или жидкие растворы, галогениды и сульфиды. В качестве восстановителей применяют: водород, окись углерода, метан, продукты сжигания природного газа или угля, твердый углерод, карбид кальция, различные металлы с большей величиной электроотрицательности, чем у восстанавливаемых металлов и электрический ток.

    Простейшая реакция восстановления — диссоциация окисла по схеме: 2MeO 2Me + O2. Если бы в системе удалось создать условия, при которых po2

    В настоящее время пока наиболее эффективными являются способы химического восстановления. В случае окислов связывание кислорода осуществляют веществами восстановителями, обладающими более высоким сродством к кислороду, чем восстанавливаемый металл. Сравнительную способность различных веществ связывать кислород можно оценить по величине ∆G образования окислов (или по упругости диссоциации окислов) при различных температурах. Анализ этих данных показывает, что устойчивость таких окислов, как H2O и CO2 в широком интервале температур значительно выше, чем устойчивость окислов большинства цветных металлов. Это предопределяет возможность использования водорода, углерода и окиси углерода в качестве восстановителей окислов металлов.

    Читайте также:  Химическое изменение цвета металла

    Термодинамика газового восстановления окислов нелетучих металлов.

    Процесс газового восстановления оксидов нелетучих металлов наиболее прост для термодинамического анализа. Задачу такого анализа в общем случае можно сформулировать следующим образом. Дан оксид нелетучего металла MeO. Требуется определить условия, при которых этот оксид восстанавливается до металла, если в качестве восстановителя использовать продукты сжигания углерода — смесь CO+CO2.

    Любой термодинамический анализ восстановительного процесса рекомендуется начинать с характеристики системы и правила фаз Гиббса. Допустим, процесс осуществляется в открытой системе (над системой пропускается газовая смесь до установления равновесия). В указанной системе протекает реакция:

    MeO + CO Me + CO2

    Пусть окисел и металл находятся в твердых взаимнонерастворимых фазах, а состав восстанавливаемого окисла лежит на металлической стороне области гомогенности. С учетом сказанного выбранная система будет трехкомпонентной и трехфазной. Число степеней свободы в общем случае равно двум. Задавая температуру и общее давление либо парциальное давление одного из газовых компонентов (H2-H2O или CO-CO2) мы полностью определяем состояние системы. В конкретном данном случае реакция идет без изменения числа молей газовых компонентов и в этом случае общее давление не влияет на состояние системы, соотношение CO/CO2, определяющее константу равновесия будет зависеть только от температуры. Т.е. в данном случае система моновариантна. Учитывая, что металл и оксид находятся в чистом виде константа равновесия реакции равна:

    которая, как известно, зависит только от температуры.

    Для решения задачи определения условий восстановления твердого оксида необходимо конкретизировать постановку задачи. Для открытой системы могут быть следующие варианты:

    1- при заданной температуре определить необходимый состав подаваемого газа (CO2/CO) для восстановления;

    2- при заданном соотношении CO2/CO в восстановительном газе определить температуру, при которой будет происходить восстановление.

    И в том и в другом случае, прежде всего, необходимо определение равновесных параметров системы для конкретных и затем определение исходного состояния системы по отношению к равновесному.

    Для расчета равновесных параметров системы уравнение дополним балансовым уравнением и уравнениями связи между парциальными давлениями компонентов газовой фазы и составом:

    Поскольку, как показано выше система нонвариантна, то фиксированием одного из внешних параметров все остальные параметры в равновесии должны быть строго определенными, т.е. определяются однозначно. Действительно, при задании температуры (первый вариант постановки задачи) Kр константа и в четырех уравнениях четыре неизвестных CCO, CCO2, pCO и pCO2. Полученная таким образом система уравнений в дальнейшем решается аналитически, как, например, в данном простейшем варианте, либо численными методами с применением вычислительной техники при расчете сложных многокомпонентных систем.

    При втором варианте постановки задачи задается соотношение CO2/CO=a (где a -константа), выражение для которого записывается пятым уравнением и неизвестных становится также пять (с учетом температуры). В первом уравнении системы вместо Кр записывается выражение для зависимости Кр от стандартной энергии Гиббса и температуры. Решением системы определяют граничную температуру, по разную сторону от которой процесс восстановления оксида заданной смесью газов возможен или нет.

    Либо для заданной температуры определяют, как соотносится исходное состояние системы по отношению к равновесному. Если доля CO в газовой смеси выше равновесного значения, то будет происходить восстановление оксида (в открытой системе при неизменности отношения CO2/CO при достаточной временной выдержке оксид восстановится полностью), а при концентрации CO ниже равновесной — наоборот будет происходить окисление металла с образованием оксида.

    Для анализа процесса восстановления часто используют диаграммы, линии на которых отражают зависимость равновесного состава газовой фазы (обычно содержание CO или соотношение CO/CO2) от температуры. Пример простейшей диаграммы приведен на рисунке 4.15.

    При расположении параметров системы выше кривой будет происходить восстановление оксида, ниже кривой — окисление металла.

    В более сложных системах, например, при восстановлении оксидов железа, имеющего переменную степень окисления (FeO, Fe3O4, Fe2O3) на диаграмме буду несколько пересекающихся кривых, отражающих равновесие газовой фазы с конденсированными фазами различного состава.

    Рассчитать формы кривой, если:

    Для первой реакции, поскольку ∆G o =-RT∙ln(Kp), получим:

    pCO=1/(1+Kp1)=1/(1+e (183,03/ RT+8,7/ R) )

    Это кривая, описывающая равновесие газовой фазы (CO+CO2) и конденсированных фаз FeO и Fe. Аналогично получаются зависимости для других равновесных фаз. Вид диаграммы восстановления оксидов железа газовой смесью CO-CO2 приведен на рисунке 4.15.

    Читайте также:  Микромотор зуботехнический для металла

    Это были рассмотрены некоторые характерные простейшие случаи расчета равновесий в системе металл – оксид — газовая смесь (CO+CO2) в открытой системе. В заключение рассмотрения восстановления оксидов в открытой системе с фиксированной температурой вспомним, что восстановительная смесь газов может состоять не только из СО и СО2 (продуктов сжигания углерода), во и из Н2 + Н20 (продуктов сжигания водорода). Вторая газовая смесь вполне заслуживает внимания, так как водород — топливо будущего, экологически более чистое, чем углерод.

    В закрытой системе процесс наступления равновесия имеет свои особенности. Исходная газовая смесь в процессе взаимодействия с конденсированными фазами меняет свой состав (если они исходно неравновесны) и в конечном состоянии могут быть, как только металл, только оксид либо две конденсированные фазы. К описанным выше уравнениям добавляются уравнения баланса по компонентам (рассмотреть на практическом занятии).

    Восстановление оксидов летучих металлов

    К летучим металлам относят такие, давление паров которых при заданной температуре является ощутимой величиной. Действительно, любой металл, как в твердом, так и в жидком состоянии частично испаряется в открытой емкости, однако давление паров большинства металлов при не слишком больших температурах величины настолько незначительны, что могут быть определены только современными масс-спектрометрами. Например, при 1000 К давление паров железа 1,2∙10 -13 Па, меди 3,8∙10 -11 Па. Другая часть металлов при той же температуре интенсивно испаряется. Например, (рисунок _) зависимости давления паров металлов от температуры) для цинка pZN1000=0,116, pCd1000=0,63. Само давление паров металлов зависит от температуры, поэтому, чтобы решить, летуч металл или нет, надо знать температуру процесса. Те металлы, для которых pMe Me + CO2

    Поскольку в открытой системе в исходной газовой смеси отсутствует металл, то равновесия в такой системе не может быть принципиально ни при каких условиях, т.к. при длительном протекании всех процессов металл постепенно перейдет в газ и вынесется им из системы.

    При медленной подаче газовой смеси реализуется вариант закрытой системы.

    Рассмотрим классическую закрытую систему. В такой системе, где газовая фаза не уносится, постановка равновесных задач корректна.

    Итак, в закрытую емкость, где поддерживается постоянные температура T и давление P, поместили следующее количество молей исходных веществ: nMeO, nCO, nCO2. Требуется установить, при каких условиях в системе возможно сосуществование конденсированного оксида и металла в равновесии с газовой фазой.

    Допустим в равновесии количество молей компонентов будет: xMeO, xMe (в конденсированных фазах); xCO, xCO2, xMe г (в газовой фазе). pCO, pCO2, pMe— парциальные давления веществ в равновесии. Считаем, что в равновесии одновременно присутствуют конденсированные металл и оксид, т.е. xMeO>0 и xMe >0.

    Для определения этих восьми неизвестных необходимо составить восемь уравнений. Правило фаз Гиббса гарантирует, что если заданы все степени свободы (2 — P и T), то такие уравнения всегда можно записать.

    Итак, баланс по кислороду:

    баланс по металлу:

    баланс по углероду:

    Для парциальных давлений справедливо:

    Полученная система уравнений более громоздкая, чем для системы с нелетучим металлом, однако и она еще может быть решена вручную.

    Решение системы для компонентов газовой фазы

    Восстановление оксидов из расплавов

    В реальных пирометаллургических процессах довольно редко приходится иметь дело с процессами восстановления индивидуальных конденсированных оксидов. Проведенный выше анализ таких процессов бывает полезен при рассмотрении сложных случаев восстановления, которые часто можно представить как совокупность нескольких более простых реакций. Гораздо чаще восстановлению подвергаются оксиды, которые находятся в растворе других оксидов (шлаках). Примером таких процессов могут служить фьюмигование шлаков — восстановление ZnO и PbO из шлака с возгонкой летучих металлов; восстановление магнетита при обеднении шлаков, раскисление меди в процессе ее огневого рафинирования, получение ферроникеля (сплава железа с никелем) из оксидного расплава, разрабатываемый в последнее время процесс получения чугуна из шлаков цветной металлургии. Первым этапом исследования подобных процессов становится термодинамический анализ, позволяющий принципиально оценить возможность осуществления того или иного процесса и его конечные (равновесные) параметры.

    Дата добавления: 2016-02-09 ; просмотров: 2810 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

    Источник

    Поделиться с друзьями
    Металл
    Adblock
    detector