Уравнения реакций металла с кислотным оксидом

Химические свойства кислотных оксидов

1. Кислотные оксиды взаимодействуют с основными оксидами и основаниями с образованием солей.

При этом действует правило — хотя бы одному из оксидов должен соответствовать сильный гидроксид (кислота или щелочь).

Кислотные оксиды сильных и растворимых кислот взаимодействуют с любыми основными оксидами и основаниями:

Кислотные оксиды нерастворимых в воде и неустойчивых или летучих кислот взаимодействуют только с сильными основаниями (щелочами) и их оксидами. При этом возможно образование кислых и основных солей, в зависимости от соотношения и состава реагентов.

Например , оксид натрия взаимодействует с оксидом углерода (IV), а оксид меди (II), которому соответствует нерастворимое основание Cu(OH)2 — практически не взаимодействует с оксидом углерода (IV):

CuO + CO2

2. Кислотные оксиды взаимодействуют с водой с образованием кислот.

Исключение — оксид кремния, которому соответствует нерастворимая кремниевая кислота. Оксиды, которым соответствуют неустойчивые кислоты, как правило, реагируют с водой обратимо и в очень малой степени.

3. Кислотные оксиды взаимодействуют с амфотерными оксидами и гидроксидами с образованием соли или соли и воды.

Обратите внимание — с амфотерными оксидами и гидроксидами взаимодействуют, как правило, только оксиды сильных или средних кислот!

Например , ангидрид серной кислоты (оксид серы (VI)) взаимодействует с оксидом алюминия и гидроксидом алюминия с образованием соли — сульфата алюминия:

А вот оксид углерода (IV), которому соответствует слабая угольная кислота, с оксидом алюминия и гидроксидом алюминия уже не взаимодействует:

4. Кислотные оксиды взаимодействуют с солями летучих кислот.

При этом действует правило: в расплаве менее летучие кислоты и их оксиды вытесняют более летучие кислоты и их оксиды из их солей.

Например , твердый оксид кремния SiO2 вытеснит более летучий углекислый газ из карбоната кальция при сплавлении:

5. Кислотные оксиды способны проявлять окислительные свойства.

Как правило, оксиды элементов в высшей степени окисления — типичные окислители (SO3, N2O5, CrO3 и др.). Сильные окислительные свойства проявляют и некоторые элементы с промежуточной степенью окисления (NO2 и др.).

6. Восстановительные свойства.

Восстановительные свойства, как правило, проявляют оксиды элементов в промежуточной степени окисления (CO, NO, SO2 и др.). При этом они окисляются до высшей или ближайшей устойчивой степени окисления.

Например , оксид серы (IV) окисляется кислородом до оксида серы (VI):

Источник

Химические свойства основных оксидов

Химические свойства основных оксидов

Подробно про оксиды, их классификацию и способы получения можно прочитать здесь.

1. Взаимодействие с водой. С водой способны реагировать только основные оксиды, которым соответствуют растворимые гидроксиды (щелочи). Щелочи образуют щелочные металлы (литий, натрий, калий, рубидий и цезий) и щелочно-земельные (кальций, стронций, барий). Оксиды остальных металлов с водой химически не реагируют. Оксид магния реагирует с водой при кипячении.

CuO + H2O ≠ (реакция не идет, т.к. Cu(OH)2 — нерастворимый гидроксид)

2. Взаимодействие с кислотными оксидами и кислотами. При взаимодействии основным оксидов с кислотами образуется соль этой кислоты и вода. При взаимодействии основного оксида и кислотного образуется соль:

основный оксид + кислота = соль + вода

основный оксид + кислотный оксид = соль

При взаимодействии основных оксидов с кислотами и их оксидами работает правило:

Читайте также:  Металлизированная краска по металлу

Хотя бы одному из реагентов должен соответствовать сильный гидроксид (щелочь или сильная кислота).

Иными словами, основные оксиды, которым соответствуют щелочи, реагируют со всеми кислотными оксидами и их кислотами. Основные оксиды, которым соответствуют нерастворимые гидроксиды, реагируют только с сильными кислотами и их оксидами (N2O5, NO2, SO3 и т.д.).

Основные оксиды, которым соответствуют щелочи Основные оксиды, которым соответствуют нерастворимые основания
Реагируют со всеми кислотами и их оксидами Реагируют только с сильными кислотами и их оксидами
Na2O + SO2 → Na2SO3 CuO + N2O5 → Cu(NO3)2

3. Взаимодействие с амфотерными оксидами и гидроксидами.

При взаимодействии основных оксидов с амфотерными образуются соли:

основный оксид + амфотерный оксид = соль

С амфотерными оксидами при сплавлении взаимодействуют только основные оксиды, которым соответствуют щелочи . При этом образуется соль. Металл в соли берется из более основного оксида, кислотный остаток — из более кислотного. В данном случае амфотерный оксид образует кислотный остаток.

CuO + Al2O3 (реакция не идет, т.к. Cu(OH)2 — нерастворимый гидроксид)

(чтобы определить кислотный остаток, к формуле амфотерного или кислотного оксида добавляем молекулу воды: Al2O3 + H2O = H2Al2O4 и делим получившиеся индексы пополам, если степень окисления элемента нечетная: HAlO2. Получается алюминат-ион AlO2 — . Заряд иона легко определить по числу присоединенных атомов водорода — если атом водорода 1, то заряд аниона будет -1, если 2 водорода, то -2 и т.д.).

Амфотерные гидроксиды при нагревании разлагаются, поэтому реагировать с основными оксидами фактически не могут.

4. Взаимодействие оксидов металлов с восстановителями.

При оценке окислительно-восстановительной активности металлов и их ионов можно использовать электрохимический ряд напряжений металлов:

Восстановительные свойства (способность отдавать электроны) у простых веществ-металлов здесь увеличиваются справа налево, окислительные свойства ионов металлов — увеличиваются наоборот, слева направо. При этом некоторые ионы металлов в промежуточных степенях окисления могут проявлять также восстановительные свойства (например ион Fe 2+ можно окислить до иона Fe 3+ ).

Более подробно про окислительно-восстановительные реакции можно прочитать здесь.

Таким образом, ионы некоторых металлов — окислители (чем правее в ряду напряжений, тем сильнее). При взаимодействии с восстановителями металлы переходят в степень окисления 0.

4.1. Восстановление углем или угарным газом.

Углерод (уголь) восстанавливает из оксидов до простых веществ только металлы, расположенные в ряду активности после алюминия. Реакция протекает только при нагревании.

FeO + C = Fe + CO

Активные металлы, расположенные в ряду активности левее алюминия, активно взаимодействуют с углеродом, поэтому при взаимодействии их оксидов с углеродом образуются карбиды и угарный газ:

CaO + 3C = CaC2 + CO

Угарный газ также восстанавливает из оксидов только металлы, расположенные после алюминия в электрохимическом ряду:

CuO + CO = Cu + CO2

4.2. Восстановление водородом .

Водород восстанавливает из оксидов только металлы, расположенные в ряду активности правее алюминия. Реакция с водородом протекает только в жестких условиях – под давлением и при нагревании.

CuO + H2 = Cu + H2O

4.3. Восстановление более активными металлами (в расплаве или растворе, в зависимости от металла)

При этом более активные металлы вытесняют менее активные. То есть добавляемый к оксиду металл должен быть расположен левее в ряду активности, чем металл из оксида. Реакции, как правило, протекают при нагревании.

Например , оксид цинка взаимодействует с алюминием:

3ZnO + 2Al = Al2O3 + 3Zn

но не взаимодействует с медью:

Читайте также:  Тем кто любит металл

ZnO + Cu ≠

Восстановление металлов из оксидов с помощью других металлов — это очень распространенный процесс. Часто для восстановления металлов применяют алюминий и магний. А вот щелочные металлы для этого не очень подходят – они слишком химически активны, что создает сложности при работе с ними.

Алюмотермия – это восстановление металлов из оксидов алюминием.

Например : алюминий восстанавливает оксид меди (II) из оксида:

3CuO + 2Al = Al2O3 + 3Cu

Магниетермия – это восстановление металлов из оксидов магнием.

CuO + Mg = Cu + MgO

Железо можно вытеснить из оксида с помощью алюминия:

При алюмотермии образуется очень чистый, свободный от примесей углерода металл.

4.4. Восстановление аммиаком.

Аммиаком можно восстанавливать только оксиды неактивных металлов. Реакция протекает только при высокой температуре.

Например , аммиак восстанавливает оксид меди (II):

3CuO + 2NH3 = 3Cu + 3H2O + N2

5. Взаимодействие оксидов металлов с окислителями.

Под действием окислителей некоторые основные оксиды (в которых металлы могут повышать степень окисления, например Fe 2+ , Cr 2+ , Mn 2+ и др.) могут выступать в качестве восстановителей.

Например , оксид железа (II) можно окислить кислородом до оксида железа (III):

Источник

ВЗАИМОДЕЙСТВИЕ МЕТАЛЛОВ С ОКСИДАМИ

МЕТАЛЛОВ

По химическим свойствам металлы подразделяют на:

1)Активные (щелочные и щелчноземельные металлы, Mg, Al, Zn и др.)

2) Металлы средней активности (Fe, Cr, Mn и др.) ;

3)Малоактивные (Cu, Ag)

4) Благородные металлы – Au, Pt, Pd и др.

В реакциях — только восстановители.

Атомы металлов легко отдают электроны внешнего (а некоторые – и предвнешнего) электронного слоя, превращаясь в положительные ионы.

Возможные степени окисления Ме

5. ВЗАИМОДЕЙСТВИЕ С ФОСФОРОМ И АЗОТОМ протекает при нагревании (исключение: литий с азотом при нормальных условиях) :

с фосфором – фосфиды: 3Ca + 2P =Са3P2,

С азотом – нитриды 6Li + N2 = 3Li2N (нитрид лития) (н.у.)

3Mg + N2 = Mg3N2 (нитрид магния)

6. ВЗАИМОДЕЙСТВИЕ С УГЛЕРОДОМ И КРЕМНИЕМ протекает при нагревании:

С углеродом образуются карбиды

С углеродом реагируют только наиболее активные металлы.

Из щелочных металлов карбиды образуют литий и натрий, калий, рубидий, цезий не взаимодействуют с углеродом :

Металлы – d-элементы образуют с углеродом соединения нестехиометрического состава типа твердых растворов: WC, ZnC, TiC – используются для получения сверхтвёрдых сталей.

с кремнием – силициды: 4Cs + Si = Cs4Si,

2. ВЗАИМОДЕЙСТВИЕ МЕТАЛЛОВ С ВОДОЙ:

С водой реагируют металлы, стоящие до водорода в электрохимическом ряду напряжений

Щелочные и щелочноземельные металлы реагируют с водой без нагревания , образуя растворимые гидроксиды( щелочи ) и водород, алюминий (после разрушения оксидной пленки — амальгирование),

магний при нагревании, образуют нерастворимые основания и водород.

2Na + 2HOH = 2NaOH + H2↑
Сa + 2HOH = Ca(OH)2 + H2↑

2Аl + 6Н2O = 2Аl(ОН)3 + ЗН2↑

Остальные металлы реагируют с водой только в раскаленном состоянии , образуя оксиды (железо – железную окалину)

Zn + Н2O = ZnO + H2 ↑ 3Fe + 4HOH = Fe3O4 + 4H2↑

2Cr + 3H₂O = Cr₂O₃ + 3H₂↑

ВЗАИМОДЕЙСТВИЕ МЕТАЛЛОВ С КИСЛОРОДОМ И ВОДОЙ

На воздухе железо и хром легко окисляется в присутствии влаги (ржавление):

4Fe + 3O2 + 6H2O = 4Fe(OH)3

4Cr + 3O2 + 6H2O = 4Cr(OH)3

ВЗАИМОДЕЙСТВИЕ МЕТАЛЛОВ С ОКСИДАМИ

(оксидами неметаллов и менее активных металлов)

Металлы (Al, Mg,Са ), восстанавливают при высокой температуре неметаллы или менее активные металлы из их оксидов → неметалл или малоактивный металл и оксид (кальцийтермия, магнийтермия, алюминотермия)

Читайте также:  Чертеж листового металла гост

2Al + Cr2O3 = 2Cr + Al2O3

ЗСа + Cr₂O₃ = ЗСаО + 2Cr (800 °C)

8Al+3Fe3O4 = 4Al2O3+9Fe (термит)

2Mg + CО2 = 2MgO + С Mg + N2O = MgO + N2↑

Zn + CО2 = ZnO+ CO 2Cu + 2NO = 2CuO + N2

3Zn + SО2 = ZnS + 2ZnO

ВЗАИМОДЕЙСТВИЕ МЕТАЛЛОВ С ОКСИДАМИ

Металлы железо и хром реагируют со оксидами, уменьшая степень окисления

Cr + Cr2⁺³O3 = 3Cr⁺²O

5. ВЗАИМОДЕЙСТВИЕ С КИСЛОТАМИ (КРОМЕ HNO3 и Н2SО4 (конц.)

Металлы, стоящие в электрохимическом ряду напряжений металлов левее водорода, вытесняют его из разбавленных кислот → соль и водород.

Мg + 2НС1 = МgСl2 + Н2↑

Al + 2НС1 = Al⁺³Сl₃ + Н2↑

С концентрированной серной и азотной любой концентрации реакции идет по другому механизму

Металл + HNO₃ → соль + H₂O + …

Запомни! Азотная кислота никогда не выделяет водород при взаимодействии с металлами.

В качестве продуктов могут образовываться оксиды азота в разных степенях окисления, молекулярный азот, аммиак и соли аммония.
Металлы платиновой группы — золото, платина и тантал инертны к азотной кислоте во всём диапазоне концентраций, остальные металлы реагируют с ней, ход реакции при этом определяется концентрацией кислоты.

Общая закономерность при взаимодействии азотной кислоты с металлами: чем более разбавленная кислота и чем активнее металл, тем глубже восстанавливается азот:

←увеличение концентрации кислоты

→ увеличение активности металла

Пассивация: с холодной конц. серной кислотой не реагируют: Al, Cr, Fe, Be, Co

При нагревании пассивирующие пленки растворяются, и взаимодействие с кислотой протекает интенсивно.

Металл + H₂SO₄(конц) → соль + H₂O + …

РЕАКЦИИ С СОЛЯМИ

Активные металлы вытесняют из солей менее активные.

Восстановление из растворов:

CuSO4 + Zn = Zn SO4 + Cu

Mg + CuCl2(pp) = MgCl2 + Сu

Восстановление металлов из расплавов их солей

3Na+ AlCl₃ = 3NaCl + Al

TiCl2 + 2Mg = MgCl2 +Ti

Металлы групп В реагируют с солями, понижая степень окисления.

Источник

Уравнения реакций металла с кислотным оксидом

Названия оксидов строится таким образом: сначала произносят слово «оксид», а затем называют образующий его элемент. Если элемент имеет переменную валентность, то она указывается римской цифрой в круглых скобках в конце названия:
Na I 2O – оксид натрия; Са II О – оксид кальция;
S IV O2 – оксид серы (IV); S VI O3 – оксид серы (VI).

По химическим свойствам оксиды делятся на две группы:
1. Несолеобразующие (безразличные) – не образуют солей, например: NO, CO, H2O;
2. Солеобразующие, которые, в свою очередь, подразделяются на:
основные – это оксиды типичных металлов со степенью окисления +1,+2 (I и II групп главных подгрупп, кроме бериллия) и оксиды металлов в минимальной степени окисления, если металл обладает переменной степенью окисления (CrO, MnO);
кислотные – это оксиды типичных неметаллов (CO2, SO3, N2O5) и металлов в максимальной степени окисления, равной номеру группы в ПСЭ Д.И.Менделеева (CrO3, Mn2O7);
амфотерные оксиды (обладающие как основными, так и кислотными свойствами, в зависимости от условий проведения реакции) – это оксиды металлов BeO, Al2O3, ZnO и металлов побочных подгрупп в промежуточной степени окисления (Cr2O3, MnO2).

Например, оксиду кальция CaO отвечает гидроксид кальция Ca(OH)2, оксиду кадмия CdO – гидроксид кадмия Cd(OH)2.

Например, оксиду серы (IV) соответствует сернистая кислота H2SO3 .

Оксиды, гидратные соединения которых проявляют свойства как кислот, так и оснований, называются амфотерными.
Например: оксид алюминия Al2O3, оксид марганца (IV) MnO2.

Источник

Поделиться с друзьями
Металл