МЕХАНИЧЕСКИЕ СВОЙСТВА МЕТАЛЛОВ
И МЕТОДЫ ИХ ОПРЕДЕЛЕНИЯ
Цель работы: изучить способы определения основных механических свойств металлических материалов.
Теоретические сведения
Механические свойства определяют способность металлов сопротивляться воздействию внешних сил (нагрузок). Они зависят от химического состава металлов, их структуры, характера технологической обработки и других факторов. Зная механические свойства металлов, можно судить о поведении металла при обработке и в процессе работы машин и механизмов.
К основным механическим свойствам металлов относятся прочность, пластичность, твердость и ударная вязкость.
Прочность – способность металла не разрушаться под действием приложенных к нему внешних сил.
Пластичность – способность металла получать остаточное изменение формы и размеров без разрушения.
Твердость – способность металла сопротивляться вдавливанию в него другого, более твердого тела.
Ударная вязкость – степень сопротивления металла разрушению при ударной нагрузке.
Механические свойства определяют путем проведения механических испытаний.
Испытания на растяжение. Этими испытаниями определяют такие характеристики, как пределы пропорциональности, упругости, прочности и пластичность металлов. Для испытаний на растяжение применяют круглые и плоские образцы (рисунок 2.1, а, б), форма и размеры которых установлены стандартом. Цилиндрические образцы диаметром d = 10 мм, имеющие расчетную длину l = 10d, называют нормальными, а образцы, у которых длина l = 5d, – короткими. При испытании на растяжение образец растягивается под действием плавно возрастающей нагрузки и доводится до разрушения.
Разрывные машины снабжены специальным самопишущим прибором, который автоматически вычерчивает кривую деформации, называемую диаграммой растяжения. Диаграмма растяжения в координатах «нагрузка Р – удлинение ∆l» отражает характерные участки и точки, позволяющие определить ряд свойств металлов и сплавов (рисунок 2.1). На участке 0 — Рпц удлинение образца увеличивается прямо пропорционально возрастанию нагрузки. При повышении нагрузки свыше Рпц, на участке Рпц — Pупр прямая пропорциональность нарушается, но деформация остается упругой (обратимой). На участке выше точки Pvпр возникают заметные остаточные деформации, и кривая растяжения значительно отклоняется от прямой. При нагрузке Рт появляется горизонтальный участок диаграммы — площадка текучести Т-Т 1 , которая наблюдается, главным образом, у деталей из низкоуглеродистой стали. На кривых растяжения хрупких металлов площадка текучести отсутствует. Выше точки Рт нагрузка возрастает до точки А, соответствующей максимальной нагрузке Рв, после которой начинается ее падение, связанное с образованием местного утонения образца (шейки). Затем нагрузка падает до точки В, где и происходит разрушение образца. С образованием шейки разрушаются только пластичные металлы.
а, б – стандартные образцы для испытания на растяжение;
в – диаграмма растяжения образца из пластичного материала
Рисунок 2.1 – Испытание на растяжение
Усилия, соответствующие основным точкам диаграммы растяжения, дают возможность определить характеристики прочности, выраженные в мегапаскалях, МПа, по формуле
, (2.1)
Pi – соответствующая точка диаграммы растяжения, Н;
F – площадь поперечного сечения образца до испытания, мм 2 .
Предел пропорциональности σпц – это наибольшее напряжение, до которого сохраняется прямая пропорциональность между напряжением и деформацией:
, (2.2)
где Pпц – напряжение, соответствующее пределу пропорциональности, Н.
Предел упругости σупр – напряжение, при котором пластические деформации впервые достигают некоторой малой величины, характеризуемой определенным допуском (обычно 0,05 %):
, (2.3)
где Pупр – напряжение, соответствующее пределу упругости, Н.
Предел текучести физический σт — напряжение, начиная с которого деформация образца происходит почти без дальнейшего увеличения нагрузки:
, (2.4)
где Pт – напряжение, соответствующее пределу текучести, Н.
Если площадка текучести на диаграмме растяжения данного материала отсутствует, то определяется условный предел текучести σ0,2 — напряжение, вызывающее пластическую деформацию, равную 0,2 %.
Предел прочности (временное сопротивление) σв — напряжение, равное отношению наибольшей нагрузки, предшествующей разрушению образца, к первоначальной площади его сечения:
, (2.5)
где Pв – напряжение, соответствующее пределу прочности, Н.
По результатам испытания на растяжение определяют характеристики пластичности металлов.
Показатели пластичности металлов — относительное удлинение и относительное сужение – рассчитывают по результатам замеров образца до и после испытания.
Относительное удлинение δ находится как отношение увеличения длины образца после разрыва к его первоначальной расчетной длине, выраженное в процентах:
, (2.6)
где lk – длина образца после разрыва, мм;
l – расчетная (начальная) длина образца, мм.
Относительное сужение ψ определяется отношением уменьшения площади поперечного сечения образца после разрыва к первоначальной площади его поперечного сечения, выраженным в процентах:
, (2.7)
где F – начальная площадь поперечного сечения образца;
Fк – площадь поперечного сечения образца в месте разрушения.
Методы определения твердости.Наиболее распространенным методом определения твердости металлических материалов является метод вдавливания, при котором в испытуемую поверхность под действием постоянной статической нагрузки вдавливается другое, более твердое тело (наконечник). На поверхности материала остается отпечаток, по величине которого судят о твердости материала. Показатель твердости характеризует сопротивление материала пластической деформации, как правило, большой, при местном контактном приложении нагрузки.
Твердость определяют на специальных приборах – твердомерах, которые отличаются друг от друга формой, размером и материалом вдавливаемого наконечника, величиной приложенной нагрузки и способом определения числа твердости. Так как для измерения твердости испытывают поверхностные слои металла, то для получения правильного результата поверхность металла не должна иметь наружных дефектов (трещин, крупных царапин и т. д.).
Измерение твердости по Бринеллю. Сущность этого способа заключается в том, что в поверхность испытуемого металла вдавливается стальной закаленный шарик диаметром 10, 5 или 2,5 мм в зависимости от толщины образца под действием нагрузки, которая выбирается в зависимости от предполагаемой твердости испытуемого материала и диаметра наконечника по формулам: Р = 30D 2 ; Р = 10D 2 ;
Р = 2,5D 2 (таблица 2.1).
Таблица 2.1 – Выбор диаметра шарика D и нагрузки Р
Материал образца | Твердость, кгс/мм 2 | Толщина образца, мм | Диаметр шарика D, мм | P/D 2 , кгс/мм 2 | Нагрузка Р, кгс | Выдержка под нагрузкой, с |
Черные металлы (сталь, чугун) | 450 — 140 | более 6 6 – 3 менее 3 | 2,5 | 187,5 | ||
Черные металлы | Менее 140 | более 6 6 – 3 менее 3 | 2,5 | 187,5 | ||
Твердые цветные металлы (латунь, бронза, медь) | 140 – 32 | более 6 6 – 3 менее 3 | 2,5 | 62,5 | ||
Мягкие цветные металлы (олово, алюминий и др.) | 35 — 8 | более 6 6 – 3 менее 3 | 2,5 | 2,5 | 62,5 15,6 |
На поверхности образца остается отпечаток (рисунок 2.2, а), по диаметру которого определяют твердость. Диаметр отпечатка измеряют специальной лупой с делениями.
Твердость рассчитывают по формуле
, (2.8)
где НВ – твердость по Бринеллю, кгс/мм 2 ;
Р – нагрузка при испытании, кгс или Н;
F – площадь полученного отпечатка, мм 2 ;
D – диаметр наконечника, мм;
d – диаметр отпечатка, мм.
Рисунок 2.2 – Измерение твердости методами Бринелля (а),
На практике пользуются специальными таблицами, которые дают перевод диаметра отпечатка в число твердости, обозначаемое НВ. Например: 120 НВ, 350 НВ и т.д. (Н – твердость, В – по Бринеллю, 120, 350 – число твердости в кгс/мм 2 , что соответствует 1200 и 3500 МПа).
Этот способ применяют, главным образом, для измерения твердости незакаленных металлов и сплавов: проката, поковок, отливок и др.
Твердомер Бринелля можно использовать в том случае, если твердость материала не превышает 450 кгс/мм 2 . В противном случае произойдет деформация шарика, что приведет к погрешностям в измерении. Кроме того, твердомер Бринелля не применяется для испытания тонких поверхностных слоев и образцов тонкого сечения.
Измерение твердости по Роквеллу. Измерение осуществляют путем вдавливания в испытуемый металл стального шарика диаметром 1,588 мм или алмазного конуса с углом при вершине 120° (см. рисунок 2.2, б).В отличие от метода Бринелля твердость по Роквеллу определяют не по диаметру отпечатка, а по глубине вдавливания наконечника.
Вдавливание производится под действием двух последовательно приложенных нагрузок — предварительной, равной ≈ 100 Н, и окончательной (общей) нагрузки, равной 1400, 500 и 900 Н. Твердость определяют по разности глубин вдавливания отпечатков. Для испытания твердых материалов (например, закаленной стали) необходима нагрузка 1500 Н, а вдавливание стальным шариком нагрузкой 1000 Н производят для определения твердости незакаленной стали, бронзы, латуни и других мягких материалов. Глубина вдавливания измеряется автоматически, а твердость после измерения отсчитывается по трем шкалам: А, В, С (таблица 2.2).
Таблица 2.2 – Наконечники и нагрузки для шкал А, В, С
Наконечник | Суммарная нагрузка Р, Н (кгс) | Отсчет по шкале | Обозначение твердости |
Стальной шарик | 1000 (100) | В (красная) | HRB |
Алмазный конус | 1500 (150) | С (черная) | HRC |
Алмазный конус | 600 (60) | А (черная) | HRA |
Твердость (число твердости) по Роквеллу обозначается следующим образом: 90 HRA, 80 HRB, 55 HRC (Н – твердость, Р – Роквелл, А, В, С – шкала твердости, 90, 80, 55 – число твердости в условных единицах).
Определение твердости по Роквеллу имеет широкое применение, так как дает возможность испытывать мягкие и твердые металлы без дополнительных измерений; размер отпечатков очень незначителен, поэтому можно испытывать готовые детали без их порчи.
Измерение твердости по Виккерсу. Данный метод позволяет измерять твердость как мягких, так и очень твердых металлов и сплавов. Он пригоден для определения твердости очень тонких поверхностных слоев (толщиной до 0,3мм). В этом случае в испытуемый образец вдавливается четырехгранная алмазная пирамида с углом при вершине 136 о (см. рисунок 2.2, в). При таких испытаниях применяются нагрузки от 50 до 1200 Н. Измерение отпечатка производят по длине его диагонали, рассматривая отпечаток под микроскопом, входящим в твердомер. Число твердости по Виккерсу, обозначаемое НV, находят по формуле
, (2.9)
где Р – нагрузка, Н;
d – длина диагонали отпечатка, мм.
На практике число твердости НV находят по специальным таб-лицам.
Определение ударной вязкости производят на специальном маятниковом копре (рисунок 2.3). Для испытаний применяется стандартный надрезанный образец, который устанавливается на опорах копра. Маятник определенной массой поднимают на установленную высоту Н и закрепляют, а затем освобожденный от защелки маятник падает, разрушает образец и снова поднимается на некоторую вы-
соту h. Удар наносится по стороне образца, противоположной надрезу. Для испытаний используют призматические образцы с надрезами различных видов: U-образный, V-образный, T-образный (надрез с усталостной трещиной).
| |
|
а – схема испытания; б – образцы для испытаний.
Рисунок 2.3 – Испытания на ударную вязкость
Ударная вязкость КС (Дж/см 2 ) оценивается работой, затраченной маятником на разрушение стандартного надрезанного образца, отнесенной к сечению образца в месте надреза:
, (2.10)
где А – работа, затраченная на разрушение образца (определяется по разности энергий маятника до и после удара: А – А1), Дж;
F – площадь поперечного сечения образца в месте надреза, см 2 .
В зависимости от вида надреза в образце ударная вязкость обозначается KCU, KCV, KCТ (третья буква – вид надреза).
Материалы и принадлежности
· Образцы для испытания на растяжение, твердость и ударную вязкость.
· Разрывная испытательная машина.
· Твердомеры Бринелля, Роквелла, Виккерса.
Порядок выполнения работы
Испытания на растяжение
2.3.1.1 Измерить рабочую длину и диаметр образца перед испытанием, записать данные в протокол испытаний.
2.3.1.2 Подготовленный для испытания образец поместить в зажимы машины.
2.3.1.3 Включить электродвигатель.
2.3.1.4 Наблюдать за перемещением стрелки по шкале машины, зафиксировать нагрузку, соответствующую текучести образца, и наибольшую нагрузку, предшествующую разрушению образца, записать в соответствующие графы протокола испытаний.
2.3.1.5 После разрыва образца выключить электродвигатель, обе части образца вынуть из зажимов, снять с диаграммного аппарата часть бумажной ленты с записанной диаграммой.
2.3.1.6 Обе части образца плотно приложить одну к другой, измерить длину и диаметр образца в месте разрыва, записать данные в протокол испытаний.
2.3.1.7 Рассчитать характеристики прочности и пластичности материала, записать полученные данные.
Источник
Твердость металлов и сплавов. На что она влияет? Как увеличить твердость материала?
Несмотря на обилие новых технологий в производстве материалов, одним из наиболее используемых и распространенных по сей день остается металл. Различные типы металлов, а также их сплавы, используются во всех возможных видах промышленности. Строительство, электроэнергетика, машиностроение, оборонка, медицина . Все сферы нашей жизни в той или иной степени связаны с этим материалом. Естественно, показатели качества здесь стоят на первом месте.
Основным таким показателем является твердость металла. Согласно определению, твердость представляет собой способность материалов сопротивляться упругой деформации, пластической деформации и (или) разрушению в поверхностном слое со стороны более твердого и не получающего остаточной деформации внедряемого тела (индентора твердомера).
Для многих проверяемых объектов отбор образцов с целью тщательных лабораторных исследований сложен или вообще невозможен. Единственным доступным к измерению качественным показателем материала становится именно твердость, которая определяется портативными твердомерами.
На практике измерение твердости металлов дает возможности исследования особенностей конструкции, вариантов и тонкостей эксплуатации, анализа амортизации с течением времени, получения представления о результатах температурного воздействия и т.д. Этот простой показатель покажет нам, сколько простоит мост, какой прокладывать трубопровод, быстро ли сотрется та или иная деталь, какой заточке подлежит конкретная заготовка, насколько безопасен автомобиль, долго ли прослужит имплантат и многое другое. Таким образом, твердость металлов напрямую связана со всеми важнейшими свойствами конечного изделия или конструкции.
На какие характеристики изделия влияет твердость?
Для каждой области важны конкретные критерии и показатели. Например, износостойкость, которая представляет собой подверженность металла истиранию, разрушению поверхности, изменению размеров в ходе эксплуатации в тех или иных условиях, важна решительно в каждой сфере использования данного материала. Нельзя найти такой области, где этот показатель не был бы не просто важен, а даже первостепенен, будь то детский конструктор или новый виадук, хирургическая игла или вышка связи, газопроводная труба или обручальное кольцо. Естественно, чем износостойкость выше, тем дольше прослужит изделие, и тем дороже будет стоить.
Следующим, на что напрямую влияет твердость, является возможность обработки конкретного металла или сплава и вид этой обработки. Здесь можно выделить несколько больших групп способов обработки:
- механическая,
- литье,
- термическая,
- давлением,
- сварка,
- электрическая,
- химическая.
Разумеется, при выборе метода должно быть учтено несколько критериев (основные — исходные свойства металла и желаемый результат), но твердость исходного материала является одним из основополагающих в этом вопросе.
Твердость металлов также влияет на сопротивление давлению и другим усилиям. Это важно, например, для валов или подшипников, на которые действуют силы центробежная и трения.
Величина твердости материала определяет возможность использования изделия как инструмента для работы с другими металлическими или неметаллическими изделиями. Здесь речь идет об инструментальной стали с повышенным содержанием углерода (от 0,7 % и выше). Из неё изготавливают различные инструменты как для промышленного, так и для домашнего использования: сверла, фрезы, молотки, плоскогубцы, напильники, хирургические ножницы, скальпели и т.д.
Естественным выводом из всего вышесказанного является признание огромной важности показателя твердости металлов и вопрос вероятности её повышения.
. Важно иметь в ввиду, что для определенного изделия предполагается определенная твердость.
Нет такого понятия: «Чем твёрже, тем лучше». Изделия с очень высокой твёрдостью с трудом поддаются обработке и при этом становятся хрупкими.
Например, чем выше твердость ножа, тем дольше он останется острым, но могут возникнуть проблемы с заточкой, а при частой эксплуатации клинок будет крошиться и ломаться.
Ножи с твердость ниже 60 HRC долго прослужат охотнику или туристу, т.к. они достаточно надежны: хорошо переносят ударные нагрузки, сильно не деформируются, устойчивы к коррозии, легко затачиваются.
Самые распространенные способы повышения твердости:
- термические (различные виды закалки, рекристаллизация)
- химико-термические (легирование, алитирование, хромирование и др.)
- механические (наклеп, старение, обкатывание и др.)
Каждый вариант повышения твердости металла преследует определенные цели. В зависимости от этого и выбирается способ совершенствования материала.
Закалка стали – самый древний способ повышения прочности изделия, будь то холодное оружие, либо орудия для сельскохозяйственных работ. Для приобретения необходимых качеств металл в процессе закаливания претерпевает критический нагрев и последующее быстрое охлаждение.
После закалки из углеродистых сталей производятся детали, требующие повышенной прочности (втулки, валы, шестерни и т.д.). Такой метод технологичен и, что немаловажно, недорог, так что его достоинства очевидны.
Легирование (добавление легирующих компонентов) такими элементами как олово (Sn), азот (N), свинец (Pb) в перспективе дает возможность изготавливать из этих сталей детали большого размера, испытывающие сильные нагрузки. Часто это рессорные и пружинные изделия больших диаметров.
Добавление в сплав хрома (Cr) увеличивает его прочность и устойчивость к коррозии. Нержавеющий сплав должен содержать более 13% хрома.
Часто применяемым способом повышения качества металлов и сплавов является наклёп (нагартовка) — это процесс изменения структуры материала, приводящий к повышению его твердости и прочности. В результате наклепа твердость поверхностных слоев стали увеличивается в несколько раз. Для стойких к коррозии сплавов хрома и никеля нагартовка является единственно возможным способом увеличения прочности.
Примеры использования металлов и сплавов
Одним из самых распространенных материалов является алюминий и его сплавы. Этот металл применяют при изготовлении массы предметов домашнего обихода, зеркал, деталей для стрелкового оружия и даже при производстве топлива для запуска ракет. Небольшая удельная масса Al позволяет широко использовать алюминиевые сплавы для корпусов самолётов и различных машин.
Медь часто добавляется для повышении качества метизов, при изготовлении различных проволок, проводов и труб.
Болты, винты, шурупы, анкера и др. в основном делаются из латуни и бронзы, а струбцины, барашковые гайки и другие удерживающие элементы чаще всего можно встретить из легированной и конструкционной стали. Нержавеющая сталь находит применение в условиях повышенного образования коррозии, а чугун до сих пор успешно служит в производстве запорной арматуры и в металлопроизводстве.
Изделия из металлов и сплавов окружают нас повсюду. Ежедневно мы эксплуатируем металлические конструкции — здания, дороги, мосты, автомобили, общественный транспорт — даже не замечая этого. Поэтому так важно быть уверенными в качестве материалов и контролировать их твердость.
Источник