Суть производства цветных металлов

Цветная металлургия

Цветная металлургия – это отрасль, которая включает в себя добычу, обогащение и создание сплавов из цветных металлов. Ее состояние является определяющим для развития и функционирования всего промышленного комплекса в целом.

Под цветными металлами следует подразумевать такие вещества и сплавы, в которых отсутствует железо. Это является главным отличием рассматриваемой отрасли от черной металлургии, основа которой – добыча железной руды и выработка чугуна и стали.

Классификация цветных металлов

В современной промышленности выделяют несколько групп цветных металлов, которые различаются между собой по их эксплуатационным свойствам и качествам. Рассмотрим некоторые из них:

  • Тяжелые. Относят никель, цинк, свинец, медь. Они имеют высокую плотность и вес.
  • Легкие. В первую очередь это алюминий, который имеет низкую плотность и, как следствие, небольшой вес. Кроме этого, к данной группе относятся магний, титан, литий.
  • Малые. Входят кобальт, ртуть, сурьма, мышьяк, висмут. Используются в различных отраслях. Из-за того, что месторождения соседствуют с залежами тяжелых металлов, их добывают попутно.
  • Легирующие (или тугоплавкие). Это ванадий, вольфрам, хром, молибден. Они обладают высокой степенью износостойкости. Их промышленное применение заключается в выплавке сплавов для улучшения эксплуатационных свойств готовых изделий.
  • Благородные. К этой группе относятся золото, платина, серебро. Встречаются крайне редко, обладают высокой степенью устойчивости к окислению, благодаря чему их использование не ограничивается только лишь ювелирным делом. Также к данному виду причисляют осмий, иридий, рутений, палладий.
  • Редкоземельные. Это скандий, тулий, лютеций, европий и т. д. Применение ограничено, поскольку месторождения небольшие и находятся на разных континентах, что в значительной мере усложняет добычу.

Подотрасли

Цветная металлургия включает в себя подотрасли, в рамках которых осуществляется выпуск различных металлов:

На его долю приходится более 45% объема выплавки всех цветных металлов. Сырьем являются бокситы, которые перерабатываются в глинозем. Основные месторождения находятся в Австралии, Бразилии, экваториальной Африке, Китае и России.

Ведущими производителями алюминия в мире признаны Россия, США, Италия, Китай, Германия.

Более четверти от всего объема выплавки приходится на медь. Она добывается из медной руды, где концентрация металла может достигать порядка 30-35%. Кроме этого, значительную роль играет переработка вторичного сырья.

Основные месторождения медных руд находятся в России, Казахстане, Чили, США, Канаде, экваториальной Африке, Китае.

Ведущими производителями являются Россия, Китай, США, страны Европы.

Эти металлы выпускаются из полиметаллических руд. Основные залежи находятся в США, Мексике, Канаде, Китае, Австралии. Производство сконцентрировано в Китае, США, Японии, Австралии, странах ЕС. На долю выплавки цинка и свинца приходится более 22% от всего объема.

Крупнейшие месторождения находятся в России, она же и является главным мировым производителем. На долю производства данного металла приходится менее 7% от мировой выплавки. Основным сырьем выступают никелевые руды.

Данный металл получают из оловянных руд. Большая часть мировых запасов приходится на Боливию и Юго-Восточную Азию. Ведущими центрами выплавки являются Боливия, Малайзия, Китай, Россия.

Производство остальных цветных металлов менее развито и имеет локальные масштабы.

Этапы производственного процесса

В цветной металлургии задействован ряд производственных процессов, включающий в себя как добычу сырья, так и выплавку.

Схемы изготовления цветных металлов хоть в целом и схожи, однако в силу особенностей того или иного ресурса имеют некоторые отличия.

В этой связи для примера следует упомянуть цикл получения алюминия, выпуск которого имеет наибольшие масштабы и значимость.

Он состоит из следующих этапов:

  • добыча бокситов;
  • обогащение алюминиевой руды (промывка, грохочение);
  • производство глинозема;
  • выплавка металлического материала;
  • выпуск алюминиевых заготовок и полуфабрикатов.

Также из глинозема производят фтористые соли и электроды.

Общий обзор состояния цветной металлургии в России

Данная отрасль промышленного производства является одной из наиболее развитых в России. Это объясняется большими запасами сырья и природных ископаемых, а также развитой производственной базой, оставшейся после распада СССР.

История развития отрасли

Человечество начало выплавлять металл и использовать сплавы достаточно давно, что подтверждается археологическими находками.

В России производство цветных металлов и развитие горного дела в целом во многом связано с именем Петра I. Именно по его указам на Урале строятся первые плавильные заводы.

К началу XX века страна становится одним из мировых лидеров металлургического производства, но события 1917 года надолго остановили его развитие. Однако в 30-е годы, во времена первых пятилеток, страна смогла восстановить и преумножить свою индустриальную мощь.

После ВОВ в СССР возводятся крупнейшие ГОКи и металлургические заводы, многие из которых продолжают работать и сейчас. Кризис 90-х годов негативно отразился на состоянии данной отрасли, однако уже в 2000 г. производство цветных металлов в стране значительно выросло.

Размещение промышленных производств

В силу экономической целесообразности большинство предприятий цветной металлургии расположено в районе мест добычи соответствующих руд. По этой причине в России выделяется несколько основных производственных баз. Стоит отметить, что для выплавки легких металлов требуется большое количество энергии, в этой связи заводы построены вблизи ее источников (преимущественно ГЭС).

Размещение основных производственных центров:

Крупные комплексы находятся в районах с развитой энергетикой (Иркутская область, Красноярский край).

Преимущественно Урал, где находится большая часть разведанных месторождений.

Запасы полиметаллических руд в стране не очень высоки. Производственные центры есть в Сибири и на Дальнем Востоке.

Предприятия размещены возле месторождений. Наиболее крупные из них – на Кольском полуострове, а также севере Сибири.

Крупнейшие игроки отрасли

Предприятия-лидеры цветной металлургии в России:

Другие компании, работающие в данной отрасли, представлены в разделе Заводы цветных металлов.

Проблемы и перспективы развития

Значительной трудностью цветной металлургии в стране является зависимость от источников электрической и тепловой энергии.

К примеру, выработка более 75% энергии на Братской ГЭС направлена на обслуживание алюминиевого комбината. Это удорожает производство и в ряде случаев (при неблагоприятной мировой конъюнктуре) может лишить его рентабельности. Выходом из ситуации является внедрение более энергоемких технологий.

Кроме этого, предприятия цветной металлургии являются одними из основных причин экологического загрязнения. Модернизация производств требует многомиллиардных вложений, однако, несмотря на расходы, проводимые меры снижают нагрузку на окружающую среду.

Источник

Цветная металлургия

Цветная металлургия – это не только комплекс мероприятий по получению цветных металлов (добыча, обогащение, металлургический передел, получение отливок чистых металов и сплавов на их основе), но и переработка лома цветных металлов.

Научно-технический прогресс не стоит на месте, и цветные металлы на сегодняшний день широко используются для разработки инновационных конструкционных материалов. Только отечественная металлургическая промышленность выпускает порядка 70 видов сплавов, используя разнообразное сырье.

В связи с низким содержанием необходимого компонента в руде и примесей других элементов, цветная металлургия является энергозатратным производством и имеет сложную структуру. Так, меди в руде содержится не более 5%, а цинка и свинца не более 5,5%. Колчеданы, добываемые на Урале, многокомпонентные, и в их составе находится порядка 30 химических элементов.

Цветные металлы подразделяются на шесть категорий, согласно своим физическим свойствам и предназначению:

  1. Тяжелые. Имеют высокую плотность, соответственно, и вес. К ним относятся Cu, Ni, Pb, Zn, Sn.
  2. Легкие. Имеют малый вес из-за незначительной удельной плотности. К ним относятся: Al, Mg, Ti, Na, Ka, Li.
  3. Малые: Hg, Co, Bi, Cd, As, Sb.
  4. Легирующие. В основном используются для получения сталей и сплавов с необходимыми качествами. Это W, Mo, Ta, Nb, V.
  5. Благородные. Широко известны и используются для изготовления ювелирных украшений. Среди них Au, Ag, Pt.
  6. Редкоземельные, рассеянные: Se, Zr, Ga, In, Tl, Ge.
Читайте также:  Электрические методы обработки металлов это

Специфика отрасли

Руды цветных металлов, как было выше сказано, содержат малое количество добываемого элемента. Поэтому на тонну той же меди необходимо до 100 т руды. Из-за большой потребности в сырье цветная металлургия, по большей части, располагается вблизи своей сырьевой базы.

Цветные руды для своей переработки требуют большого количества топлива или электроэнергии. Энергетические затраты достигают половины общих затрат, связанных с выплавкой 1 т металла. В связи с этим металлургические предприятия располагаются в непосредственной близости от производителей электроэнергии.

Производство редких металлов в основном основано на восстановлении из соединений. Сырье поступает с промежуточных этапов обогащения руд. Из-за небольших объемов и трудности производства получением редких металлов занимаются лаборатории.

Состав отрасли

Виды цветной металлургии включают в себя отрасли, связанные с получением определенных видов металлов. Так, укрупнено можно выделить следующие отрасли:

  • производство меди;
  • производство алюминия;
  • производство никеля и кобальта;
  • производство олова;
  • производство свинца и цинка;
  • добыча золота.

Получение никеля тесно связано с местом добычи никелевых руд, которые расположены на Кольском полуострове и в Норильском районе Сибири. Многие отрасли цветной металлургии отличаются многоступенчатым металлургическим переделом промежуточных продуктов.

На этом основании эффективен комплексный подход. Это сырье для получения других сопутствующих металлов. Утилизация отходов сопровождается получением материалов, использующихся не только в других отраслях тяжелого машиностроения, но и в химической и строительной отраслях.

Металлургия тяжелых металлов

Получение меди

Основными этапами получения чистой меди являются выплавка черновой меди и ее дальнейшее рафинирование. Черновая медь добывается из руд, а низкая концентрация меди в уральских медных колчеданах и большие ее объемы не позволяют перенести производственные мощности с Урала. В качестве резерва выступают: медистые песчаники, медь-молибденовые, медь-никелевые руды.

Рафинирование меди и переплавка вторичного сырья производится на предприятиях, которые удалены от источников добычи и первичной плавки. Благоприятствует им низкая стоимость электричества, так как для получения тонны меди расходуется до 5 кВт энергии в час.

Утилизация сернистых газов с последующей переработкой послужила стартом для получения серной кислоты в химической промышленности. Из остатков апатитов производит фосфатные минеральные удобрения.

Получение свинца и цинка

Металлургия цветных металлов, таких как свинец и цинк, имеет сложную территориальную разобщенность. Добычу руды ведут на Северном Кавказе, в Забайкалье, Кузбассе и на Дальнем Востоке. А обогащение и металлургический передел проводится не только возле мест выемки руды, но и на других территориях с развитой металлургией.

Свинцовые и цинковые концентраты богаты на химическую элементную базу. Однако сырье имеет разное процентное содержание элементов, из-за чего не всегда цинк и свинец можно получить в чистом виде. Поэтому технологические процессы в районах различны:

  1. В Забайкалье получают только концентраты.
  2. На Дальнем Востоке получают свинец и цинковый концентрат.
  3. На Кузбассе получают цинк и свинцовый концентрат.
  4. На Северном Кавказе ведут передел.
  5. На Урале производят цинк.

Металлургия легких металлов

Наиболее распространенным легким металлом является алюминий. Сплавы на его основе обладают свойствами, присущими конструкционным и специальным сталям.

Для получения алюминия сырьем являются бокситы, алуниты, нефелины. Производство разделено на две стадии:

  1. На первой стадии получают глинозем и необходим большой объем сырья.
  2. На второй стадии электролитическим методом производят алюминий, на что требуется недорогая энергия. Поэтому этапы производства находятся на разных территориях.

Получение алюминия и сплавов сосредоточено в промышленных центрах. Сюда же поставляется лом на вторичную переработку, что в итоге снижает себестоимость готовой продукции.

Источник

ПРОИЗВОДСТВО ЦВЕТНЫХ МЕТАЛЛОВ

Около 70 элементов таблицы Д. И. Менделеева составляют цветные металлы, без которых немыслимо развитие отраслей промышленности. Цветные металлы широко различаются как по свойствам, так и по способам получения. Так, галлий и цезий имеют температуры плавления 29,8 и 28,5 °С соответственно, т. е. их можно расплавить в руке, а вольфрам плавится при температуре 3400 °С. Литий, имея плотность 0,53 г/см 3 , не тонет ни в бензине, ни в керосине, а плотность тантала составляет 26,6 г/см 3 . Для производства цветных металлов применяются пирометаллургия, гидрометаллургия, электролиз, как водных растворов, так и расплавленных солей.

Все цветные металлы делят на 5 групп:

1. Тяжёлые цветные металлы – это металлы, плотность которых превышает 7 г/см 3 . Типичные представители: медь (8,94 г/см 3 ), никель (8,92 г/см 3 ), свинец (11,34 г/см 3 ), цинк (7,14 г/см 3 ), олово (7,3 г/см 3 ) и др.

2. Легкие цветные металлы – алюминий (2,7 г/см 3 ), магний (1,74 г/см 3 ), кальций (1,55 г/см 3 ), барий (3,75 г/см 3 ), натрий (0,97 г/см 3 ), калий (0,86 г/см 3 ) и др.

3. Благородные металлы – золото, серебро, платина и и металлы платиновой группы.

4. Редкие металлы – это металлы, Кларк которых составляет 10 -10 (кларки элементов – числовые оценки среднего содержания химических элементов в земной коре, гидросфере, атмосфере. Введен А. Е. Ферсманом в честь американского геохимика Ф. У. Кларка). Типичные представители этой группы металлов:: титан, индий, рений, галлий, волфрам, литий, молибден и др.

5. Полупроводниковые металлы: селен, мышьяк, сурьма, германий и др.

Следует отметить, что приведенное деление условное. Так, например, титан и литий могут быть отнесены к легким металлам, а практически все полупроводниковые металлы – к редким.

2.1. Производство меди /Кнорозов,, 1974 — с. 69/

Медь — один из важнейших металлов, относится к I – й группе Периодической системы; порядковый номер 29; атомная масса – 63,546; плотность – 8,92 г/см 3 . температура плавления – 1083 °С; температура кипения – 2595 °С. По электро­проводности она несколько уступает лишь серебру и является главным проводниковым материалом в элект­ро- и радиотехнике, потребляющих 40…50 % всей меди. Почти во всех областях машиностроения используются медные сплавы — латуни и бронзы. Медь как легирую­щий элемент входит в состав многих алюминиевых и других сплавов.

Мировое производство меди в капиталистических странах около 6—7 млн. т, в том числе вторичной меди около 2 млн. т. В СССР выплавка меди за каждое пя­тилетие увеличивался на 30…40 %.

Медные руды. Медь встречается в природе главным образом в виде сернистых соединений CuS (ковеллин), Cu2S (халькозин) в со­ставе сульфидных руд (85…95 % запасов), реже в виде окисных соединений Сu2О (куприт), углекислых соединений СuСО3 · Сu(ОН)2 — малахит 2СuСО3 · Сu(ОН)2 — азурит и само­родной металлической меди (очень редко). Окисные и углекислые соединения трудно поддаются обогащению и перерабатываются гидрометаллургическим способом.

Наибольшее промышленное значение в СССР имеют сульфидные руды, из которых получают около 80 % всей меди. Самыми распространенными сульфидными рудами являются медный колчедан, медный блеск и др.

Все медные руды являются бедными и обычно содер­жат 1…2 %, иногда меньше 1 % меди. Пустая порода, как правило, состоит из песчаников, глины, известняка, сульфидов железа и т. п. Многие руды являются ком­плексными — полиметаллическими и содержат, кроме меди, никель, цинк, свинец и другие ценные элементы в виде окислов и соединений.

Примерно 90 % первичной меди получают пирометаллургическим способом; около 10 %—гидрометаллур­гическим способом.

Гидрометаллургический способ состоит в извлечении меди путем ее выщелачивания (например, слабыми рас­творами серной кислоты) и последующего выделения металлической меди из раствора. Этот способ, применя­емый для переработки бедных окисленных руд, не по­лучил широкого распространения в нашей промышлен­ности.

Читайте также:  Толщина металла для металлического гаража

Пирометаллургический способ состоит в получении меди путем ее выплавки из медных руд. Он включает обогащение руды, ее обжиг, плавку на полупродукт — штейн, выплавку из штейна черной меди, ее рафиниро­вание, т. е. очистку от примесей (рис. 2.1).

Рис. 2.1. Упрощенная схема пирометаллургического производства меди

Наиболее широко для обогащения медных руд при­меняется метод флотации. Флотация основана на раз­личном смачивании водой металлсодержащих частиц и частиц пустой породы (рис. 2.2).

Рис. 2.2. Схема флотации:

а – принципиальная схема механической флотационной машины (вариант);

б – схема всплывания частиц; 1 – мешалка с лопастями; 2 – перегородка;

3 – схема минерализованной пены; 4 – отверстие для удаления хвосты

(пустой породы); I – зона перемешивания и аэрации.

Обогащение медных руд. Бедные медные руды под­вергают обогащению для получения концентрата, содер­жащего 10…35 % меди. При обогащении комплексных руд возможно извлечение из них и других ценных эле­ментов.

В ванну флотационной машины подают пульпу — суспензию из воды, тонкоизмельченной руды (0,05…0,5 мм) и специальных реагентов, образующих на поверхности металлсодержащих частиц пленки, не сма­чиваемые водой. В результате энергичного перемеши­вания и аэрации вокруг этих частиц возникают пузырь­ки воздуха. Они всплывают, извлекая с собой металл­содержащие частицы, и образуют на поверхности ванны слой пены. Частицы пустой породы, смачиваемые водой, не всплывают и оседают на дно ванны.

Из пены фильтруют частицы руды, сушат их и полу­чают рудный концентрат, содержащий 10…35 % меди. При переработке комплексных руд применяют селектив­ную флотацию, последовательно выделяя металлсодер­жащие частицы различных металлов. Для этого подби­рают соответствующие флотационные реагенты.

Обжиг. Рудные концентраты, достаточно богатые медью, плавят на штейн «сырыми» — без предваритель­ного обжига, что снижает потери меди (в шлаке — при плавке, унос — с пылью при обжиге); основной недоста­ток: при плавке сырых концентратов не утилизируется сернистый газ SO2, загрязняющий атмосферу. При об­жиге более бедных концентратов удаляется избыток се­ры в виде SO2, который используется для производства серной кислоты. При плавке получают достаточно богатый медью штейн, произво­дительность плавильных пе­чей увеличивается в 1,5…2 раза.

Обжиг производят в вер­тикальных многоподовых цилиндрических печах (диа­метр 6,5…7,5 м, высота 9…11 м), в которых измельчен­ные материалы постепенно перемещаются механически­ми гребками с верхнего пер­вого пода на второй — ниже расположенный, затем на третий и т. д. Необходимая температура (850 °С) обес­печивается в результате го­рения серы (CuS, Cu2S и др.). Образующийся сернистый газ SO2 направляется для производства серной кислоты.

Производительность печей невысокая — до 300 т ших­ты в сутки, безвозвратный унос меди с пылью около 0,5 %.

Новым, прогрессивным способом является обжиг в кипящем слое (рис. 2.3).

Сущность этого способа состо­ит в том, что мелкоизмельченные частицы сульфидов окисляются при 600…700 °С кислородом воздуха, посту­пающего через отверстия в подине печи. Под давлением воздуха частицы обжигаемого материала находятся во взвешенном состоянии, совершая непрерывное движение и образуя «кипящий» («псевдоожиженный») слой. Обожженный материал «переливается» через порог пе­чи. Отходящие сернистые газы очищают от пыли и на­правляют в сернокислотное производство. При таком обжиге резко повышается интенсивность окисления; производительность в несколько раз больше, чем в много­подовых печах.

Плавка на штейн. Плавку на штейн концентрата наиболее часто проводят в пламенных печах, работаю­щих на пылевидном, жидком или газообразном топливе. Такие печи имеют длину до 40 м, ширину до 10 м, пло­щадь подины до 250 м 2 и вмещают 100 т и более пере­плавляемых материалов. В рабочем пространстве печей развивается температура 1500…1600 °С.

При плавке на подине печи постепенно скапливается расплавленный штейн — сплав, состоящий в основном из сульфида меди Cu2S и сульфида железа FeS. Он обычно содержит 20…60 % Сu, 10…60 % Fe и 20…25 % S. В расплавленном состоянии (t Пл —950…1050 °C) штейн поступает на переработку в черновую медь.

Плавку концентратов производят также в электропечах, в шахт­ных печах и другими способами. Технически совершенная плавка в электропечах (ток проходит между электродами в слое шлака) на­шла ограниченное применение из-за большого расхода электроэнергии. Медные кусковые руды с повышенным содержанием меди и серы часто подвергают медносерной плавке в вертикальных шахтных пе­чах с воздушным дутьем. Шихта состоит из руды (или брикетов), кокса и других материалов. Выплавляемый бедный штейн с 8…15 % Сu обогащают повторной плавкой до 25…4 % Сu, удаляя избыток железа. Эта плавка экономически выгодна, так как из печных газов улавливают до 90 % элементарной серы руды.

Черновую медь вы­плавляют путем продув­ки расплавленного штей­на воздухом в горизон­тальных цилиндрических конверторах (рис. 2.4) с основной футеровкой (магнезит) с массой плавки до 100 т. Конвер­тор установлен на опор­ных роликах и может по­ворачиваться в требуемое положение. Воздушное дутье подается через 40— 50 фурм, расположенных вдоль конвертора.

Через горловину конвертора заливают рас­плавленный штейн. При этом конвертор поворачивают так, чтобы не были залиты воздушные фурмы. На поверхность штейна через горловину или специальное пневматическое устройство загружают песок — флюс для ошлакования окислов железа, образующихся при про­дувке. Затем включают воздушное дутье и поворачивают конвертор в рабочее положение, когда фурмы находятся ниже уровня расплава. Плотность штейна (5г/см 3 ) зна­чительно меньше удельного веса меди (8,9 г/см 3 ). Поэто­му в процессе плавки штейн доливают несколько раз: пока не будет использована вся емкость конвертора, рассчитанная на выплавляемую медь. Продувка воздухом продолжается до 30 ч. Процесс выплавки черновой меди из штейна делится на два периода.

В первом периоде происходит окисление FeS кис­лородом воздушного дутья по реакции

Образующаяся закись железа FeO ошлаковывается кремнеземом SiO2 флюса:

По мере необходимости образующийся железистый шлак сливают через горловину (поворачивая конвер­тор), доливают новые порции штейна, загружают флюс и продолжают продувку. К концу первого периода же­лезо удаляется почти полностью. Штейн состоит в ос­новном из Cu2S и содержит до 80 % меди.

Шлак содержит до 3 % Сu и его используют при плав­ке на штейн.

Во втором периоде создаются благоприятные усло­вия для протекания реакций

приводящих к восстановлению меди.

В результате плавки в конверторе получается черно­вая медь. Она содержит 1,5…2 % примесей (железа, ни­келя, свинца и др.) и не может быть использована для технических надобностей. Плавку меди выпускают из конвертора через горловину, разливают на разливочных машинах в слитки (штыки) или плиты и направляют на рафинирование.

Рафинирование меди — ее очистку от примесей — проводят огневым и электролитическим способом.

Огневое рафинирование ведут в пламенных печах емкостью до 400 т. Его сущность состоит в том, что цинк, олово и другие примеси легче окисляются, чем са­ма медь, и могут быть удалены из нее в виде окислов. Процесс рафинирования состоит из двух периодов — окислительного и восстановительного.

В окислительном периоде примеси частично окисляются уже при расплавлении меди. После полного расплавления для ускорения окисления медь продувают воздухом, подавая его через погруженные в жидкий ме­талл стальные трубки. Окислы некоторых примесей (SbO2, PbO, ZnO и др.) легко возгоняются и удаляются с печными газами. Другая часть примесей образует окис­лы, переходящие в шлак (FeO, Аl2Оз, Si02). Золото и серебро не окисляются и остаются растворенными в меди.

В этот период плавки происходит также и окисление меди по реакции 4Cu+O2=2Cu2O.

Читайте также:  Составить уравнения реакций получения металлов

Задачей восстановительного периода являет­ся раскисление меди, т. е. восстановление Сu20, а так­же дегазация металла. Для его проведения окислитель­ный шлак полностью удаляют. На поверхность ванны насыпают слой древесного угля, что предохраняет ме­талл от окисления. Затем проводят так называемое дразнение меди. В расплавленный металл погружают сначала сырые, а затем сухие жерди (шесты). В результате су­хой перегонки древесины выделяются пары воды и га­зообразные углеводороды, они энергично перемешивают металл, способствуя удалению растворенных в нем газов (дразнение на плотность).

Газообразные углеводороды раскисляют медь, на­пример, по реакции 4Cu2O+CH4=8Cu+CO2+2H2O (дразнение на ковкость). Рафинированная медь содер­жит 0,3…0,6 % Sb и других вредных примесей, иногда до 0,1 % (Au+Ag).

Готовую медь выпускают из печи и разливают в слитки для прокатки или в анодные пластины для последующего электролитического рафинирования. Чистота меди после огневого рафинирования составляет 99,5 … 99,7 %.

Электролитическое рафинирование обеспечивает по­лучение наиболее чистой, высококачественной меди. Электролиз проводят в ваннах из железобетона и дере­ва, внутри футерованных листовым свинцом или винипластом. Электролитом служит раствор сернокислой ме­ди (CuSO4) и серной кислоты, нагретый до 60…65 °С, Анодами являются пластины размером 1х1 м толщиной 40…50 мм, отлитые из рафинируемой меди. В качестве катодов используют тонкие листы (0,5…0,7 мм), изго­товленные из электролитической меди.

Аноды и катоды располагают в ванне попеременно; в одной ванне помещают до 50 анодов. Электролиз ве­дут при напряжении 2…3 В и плотности тока 100… 150 А/м 2 .

При пропускании постоянного тока аноды постепенно растворяются, медь переходит в раствор в виде ка­тионов Си 2+ . На катодах происходит разрядка катионов Cu 2+ +2e → Cu и выделяется металлическая медь.

Анодные пластины растворяются за 20…30 суток. Катоды наращивают в течение 10…15 суток до массы 70…140 кг, а затем извлекают из ванны и заменяют но­выми.

При электролизе на катоде выделяется и растворяет­ся в меди водород, вызывающий охрупчивание металла. В дальнейшем катодную медь переплавляют в плавиль­ных печах и разливают в слитки для получения листов, проволоки и т. п. При этом удаляется водород. Расход электроэнергии на 1 т катодной меди составляет 200…400 кВт · ч. Электролитическая медь имеет чистоту 99,95 %. Часть примесей оседает на дне ванны в виде шлама, из которого извлекают золото, серебро и некото­рые другие металлы.

2.2. Производство алюминия /Солнцев, МиТКМ, с.44 /

В группу легких металлов, имеющих плотность меньше 5 г/см, входят Al, Mg, Ti, Be, Ca, В, Zn, К и др. Наибольшее промышленное применение из них имеют алюминий, магний, титан.

Алюминий является самым распространенным металлом в земной коре. Он преимущественно встречается в виде соединений с кислородом и кремнием алюмосиликатов. Для получения алюминия используют руды, богатые глиноземом AI2O3. Чаще всего применяют бокситы, в которых содержится, %: Аl2О3 40—60, Fе2О3 15—30,SiO25—15,ТiO22—4 и гидратной влаги 10—15.

Технологический процесс производства алюминия состоит из трех этапов: извлечение глинозема из алюминиевых руд, электролиз расплавленного глинозема с получением первичного алюминия и его рафинирование. Извлечение глинозема обычно производят щелочным способом, применяемым в двух вариантах: мокром (метод Байера) и сухом.

При мокром методе бокситы сушат, измельчают и загружают в герметические автоклавы с концентрированной щелочью, где выдерживают в течение 2—3 ч при температуре 150…250 °С и давлении до 3 МПа. При этом протекают реакции взаимодействия гидрооксида алюминия с едким натром:

Раствор алюмината натрия Nа2О· А12О в виде горячей пульпы идет на дальнейшую переработку. Оксиды железа, титана и другие примеси, не растворяющиеся в щелочах, выпадают в осадок-шлам.

Кремнезем также взаимодействует со щелочью и образует силикат натрия: SiO2 + 2NaOH = Na2O SiO2 + 4Н2О, который, в свою очередь, взаимодействуя с алюминатом натрия, выпадает в осадок, образуя нерастворимое соединение Na2O· AI2O3 ·2SiO2·2Н2О.

Пульпа после фильтрации и разбавления водой сливается в отстойник, где из алюминатного раствора выпадает в осадок гидроксид алюминия:

Гидроксид алюминия фильтруют и прокаливают при температуре до 1200 °С в трубчатых вращающихся печах. В результате получается глинозем:

Сухой щелочной способ или способ спекания состоит в совместном прокаливании при температурах 1200…1300 °С смеси боксита, соды и извести, приводящем к образованию спека, в котором содержится водорастворимый алюминат натрия:

Известь расходуется на образование нерастворимого в воде силиката кальция СаО • SiO2. Алюминат натрия выщелачивают из спека горячей водой и полученный раствор продувают углекислотой:

Осадок промывают и прокаливают, получая глинозем, как и в предыдущем способе.

Алюминий получают электролизом глинозема, растворенного в расплавленном криолите Na3AlF6. Этот метод был предложен в 1886 г. одновременно Ч.Холлом в США и П.Эру во Франции и применяется до сих пор почти без изменений. Криолит получают в результате взаимо­действия плавиковой кислоты HF с гидроксидом алюминия с последую­щей нейтрализацей содой:6HF + А1(ОН)33АlF6 + ЗН2О;

Электролиз осуществляют в алюминиевой ванне-электролизере, схема которого приведена на рис. 2.5.

Рис. 2.5. Схема электролизера для производства алюминия:

1 — катодные угольные бло­ки; 2 — огнеупорная футеровка; 3 — стальной кожух; 4 — угольные плиты; 5 — жидкий алюми­ний; 6 — металлические стержни с шинами; 7 — угольный анод; 8 — глинозем; 9 — жидкий элект­ролит; 10 — корка затвердевшего электролита; 11 — катодная токо-подводящая шина; 12 — фундамент

Ванна имеет стальной кожух прямоугольной формы, а ее стену и подину изготавливают из угольных блоков, теплоизолированных шамотным кирпичом. В футеровку подины вмонтированы стальные катодные шины, благодаря чему угольный корпус ванны является катодом электролизера. Анодами служат самообжигающиеся, вертикально расположенные угольные электроды, погруженные в расплав. При электролизе аноды постепенно сгорают и перемещаются вниз. По мере сгорания они наращиваются сверху жидкой анодной массой, из которой при нагреве удаляются летучие и происходит ее коксование. Электролит нагревается до рабочей температуры 930—950 °С. Глинозем, расходуемый в процессе электролиза, периодически загружают в ванну сверху. Благодаря охлаждению воздухом на поверхности образуется корка электролита. На боковой поверхности ванны образуется затвердевающий слой электролита (гарнисаж), пре­дохраняющий футеровку от разрушения и теплоизолирующий ванну.При высокой температуре глинозем AI2O3, растворенный в электролите, диссоциирует на ионы: А12О3=2А1 3+ + O 2- На поверхности угольной подины, являющейся катодом, ионы восстанавливаются до металла: 2Al 3+ +6e=2al

По мере уменьшения содержания глинозема в электролите его периодически загружают в ванну электролизера. Жидкий алюминий скапливается на подине электролизера и периодически удаляется с помощью вакуумных ковшей.

Кислородные ионы разряжаются на угольном аноде: 3O 2— 6e=3/2O2, окисляют анод, образуя СО и СО2, которые удаляются вентиляционными устройствами. Электролизные ванны соединяют последовательно в серии из 100—200 ванн.

Первичный алюминий, полученный в электролизной ванне, загрязнен примесями Si, Fe, неметаллическими включениями (AI2O3,С), а также газами, преимущественно водородом. Для очистки алюминия его подвергают рафинированию либо хлорированием, либо электролитиче­ским способом.

Более чистый алюминий получают электролитическим рафинированием, где электролитом являются безводные хлористые и фтористые соли. В расплавленном электролите алюминий подвергают анодному растворению и электролизу. Электролитическим рафинированием получают алюминий чистотой до 99,996 %,потребляемый электрической, химической и пищевой промышленностью. Еще более чистый алюминий(99,9999 %)можно получить зонной плавкой. Этот способ дороже электролиза, мало производителен и применяется для изготовления

небольших количеств металла в тех случаях, когда необходима особая чистота, например для производства полупроводников.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Поделиться с друзьями
Металл
Adblock
detector