Стоматологические сплавы неблагородных металлов

Тема 4 Общие сведения о металлах, сплавах металлов применяемых в ортопедической стоматологии. Характеристика сплавов неблагородных металлов, применяемых в ортопедической стоматологии.

Содержание занятия. Классификация металлов и сплавов, применяемых в ортопедической стоматологии:

Требования к металлам, применяемым в ортопедической стоматологии. Металлы должны:

Обладать высокими механическими свойствами: прочность, упругость, твердость, высокое сопротивление нагрузке.

Иметь хорошие технологические свойства: минимальная усадка, ковкость, пластичность, точное литье, полировка.

Иметь нужные физические свойства: небольшой удельный вес, невысокая температура плавления.

Обладать высокой химической стойкостью к воздействию агрессивных сред полости рта.

Быть безвредными, химически инертными в полости рта.

Сохранять постоянство формы и объема.

Быть биологически совместимыми с восстанавливаемыми тканями.

Основные свойства нержавеющей стали.

В ортопедической стоматологии применяются специальные марки нержавеющих сталей, так называемые легированные стали: для штамповки 12Х18Н9Т или 12Х18Н10Т, для литья 20Х18Н9С2.

В состав нержавеющих сталей входят: 72% железа, 0,12% углерода, 18% хрома, 9-10% никеля, 1% титана, 2% кремния. Легированные стали содержат минимальное количество углерода (его увеличение приводит к повышению твердости и уменьшению ковкости стали) и повышенное содержание специально введенных элементов, обеспечивающих получение сплавов с нужными свойствами. Хром придает устойчивость к окислению. Никель добавляют к сплаву для повышения пластичности и вязкости. Титан уменьшает хрупкость и предотвращает межкристаллическую коррозию стали. Кремний присутствует только в литьевой стали и улучшает ее текучесть. Нержавеющая сталь обладает хорошей ковкостью и плохими литьевыми качествами.

Нержавеющая сталь применяется для изготовления штампованных коронок, паяных мостовидных протезов, гнутых кламмеров. Паяние нержавеющей стали проводится при помощи серебряного припоя (ПСрМЦ 37).

Для изготовления штампованных коронок промышленность выпускает стандартные гильзы, изготовленные методом холодной штамповки, толщиной 0,25-0,28 мм и диаметром 6-16 мм. Для изготовления различных ортодонтических аппаратов, гнутых кламмеров, штифтов выпускают проволоку диаметром 0,6; 0,8; 1; 1,2; 1,5 и 2 мм и стандартные кламмера диаметром 1 и 1,2 мм. Литьевая сталь (20Х18Н9С2) выпускается в виде слитков весом от 3,5 до 16 граммов. Температура плавления 1450ºС, коэффициент относительного удлинения 50%, коэффициент усадки до 3,5%.

Основные свойства хромокобальтового сплава.

Хромокобальтовые сплавы (КХС) относятся к высоколегированным сталям. Широкое применение сплавов обусловлено высоким модулем упругости и прочности, хорошей текучестью в жидком состоянии, небольшой усадкой, высокой стойкостью к окислению и коррозии.

В состав хромокобальтового сплава входит: хрома 67%, кобальта 26%, никеля 6%, молибдена и марганца по 0,5%. Кобальт имеет высокие механические свойства, хром вводится для придания твердости и антикоррозионных свойств, никель придает вязкость и пластичность, молибден усиливает прочностные свойства, марганец улучшает жидкотекучесть.

Сплав КХС применяют для изготовления только литых протезов (литые коронки, литые мостовидные протезы, бюгельные протезы). Штамповке он не поддается, так как обладает большой упругостью и твердостью.

Температура плавления 1460ºС, коэффициент относительного удлинения 8%, коэффициент усадки 1,8%.

Из современных отечественных материалов широко используются кобальтохромомолибденовые сплавы: КХС-Е (Екатеринбург) (Co-65, Cr-28, Mo-5; Mn, Ni, Si –остальное); Целит-К (Москва) (Co-69, Cr-23, Mo-5); хромоникелевые сплавы: Целит-Н (Ni-62, Cr-24, Mo-10).

Из современных зарубежных материалов широко используются немецкие хромоникелевые сплавы «Вирон 77»,-88,-99 (Ni-70, Cr-20, Mo-6, Si, Ce, В, С-0,02), кобальтохромомолибденовые «Виробонд» (Co-63, Cr-31, Mo-3; Mn, Si, C-0,07).

Хромо-никеле­вые сплавы на основе железа

Железоуглеродистый сплав с содержанием углерода до 0,1-0,2%. Применяются марки лигированных сталей 11Х18Н9Т (ЭЯ-1) – гильзы, 20Х18Н9С2 – слитки, проволока (ЭЯ1-Т, ЭИ-95).

Лигированные стали – железоуглеродистые сплавы с минимальным содержанием углерода и с повышенным содержанием специально введенных в сплав элементов (хром, никель, молибден, титан и др.). Стали обладают хорошей ковкостью, пластичностью, упругими свойствами. Температура плавления 1450ºС. Усадка до 3%. Применяются для изготовления деталей несъемных и съемных конструкций протезов методами штамповки и литья отдельных деталей протезов. Выпускается в виде гильз, слитков, проволоки.

Хромо-кобаль­товые сплавы (КХС)

хромо-никеле­вые сплавы (НХ-Дент)

Относятся к разряду высоколигированных сплавов, со значительно меньшим количеством углерода. Обладают повышенной упругостью, прочностью, твердостью, малым коэффициентом усадки (1,8%). Находят применение при изготовлении только цельнолитых бюгельных протезов, коронок, мостовидных протезов, шин и аппаратов. Штамповке он не поддается, т.к. обладает большой упругостью и твердостью. НХ-Дент применяют для металлокерамики. Температура плавления 1460С, коэффициент относительного удлинения 8%, коэффициент усадки 1,8%

Какие металлы и их сплавы применяются в ортопедической стоматологии?

Требования к металлам применяемым в стоматологии.

Какие марки нержавеющей стали применяются в ортопедической стоматологии?

Какие отличительные свойства кобальто-хромового сплава выделяют его среди сплавов из неблагородных металлов?

Вопросы для самоподготовки

В чём суть технологии легирования?

Технологические свойства сплавов титана.

Взаимосвязь механических, химических и технологических свойств металлов и их сплавов.

Задания для самостоятельной работы (учебно-исследовательская работа):

Технология лазерной пайки. Преимущества, недостатки по сравнению с традиционной технологией паяния.

Сплавы металлов, применяемых для изготовления зубных имплантатов.

Рекомендуемая основная литература:

1. Гаврилов Е.Н., Щербаков А.С. Ортопедическая стоматология: Учебник.-3изд.; перераб. и доп.-М.:Медицина,1984.-576 с., ил.

2. Дойников А.Н., Синицын В.Д. Зуботехническое материаловедение.- 2-е изд., перераб. и доп.-М.: Медицина, 1986.- 208с., ил.

3. Курляндский В.Ю. Ортопедическая стоматология: Учебник .-3-е изд.; перераб. и доп.-М.: Медицина, 1969.-497 с.

4. Материаловедение в стоматологии / Под ред. А.И.Рыбакова.- М.: Медицина, 1984,424 с., ил.

5. Сидоренко Г.И. Зуботехническое материаловедение: Учебное пособие.-К.: Высшая шк. Головное изд-во, 1988.- 184 с.,18 ил.

Читайте также:  Выберите правильное утверждение щелочные металлы образуют кислоты

6. Материалы, применяемые в ортопедической стоматологии: Уч. пособие.-Ижевск,2009. -36с

7. Справочник по стоматологии // Под ред. А.И. Рыбакова. – 3-изд., перераб. и доп. – М.: Медицина, 1993.- 576с.

Рекомендуемая дополнительная литература:

Марков Б.П., Лебеденко И.Ю., Еричев ВВ. Руководство к практическим занятиям по ортопедической стоматологии. 4.1. -М.: ГОУ ВУНМЦ МЗ РФ, 2001. — 662 с.

Марков Б.П., Лебеденко И.Ю., Еричев ВВ. Руководство к практическим занятиям по ортопедической стоматологии. 4.2 — М.: ГОУ ВУНМЦ МЗ РФ, 2001. — 235с.

Ортопедическая стоматология: Учебник для студентов стоматлогич. фак. мед. вузов. / Под ред. В.Н. Копейкина, М.З. Миргазизова. — 2-е изд. доп. — М.: Медицина, 2001. — 621 с.

Трезубов В.Н., Штейнгарт М.З., Мишнев Л.М. Ортопедическая стоматология: Прикладное материаловедение: Учебник для мед. вузов. — СПб.: СпецЛит, 2001. — 480 с.

Трезубов В.Н., Щербаков А.С., Мишнев Л.М. Ортопедическая стоматология: Пропедевтика и основы частного курса: Учебник для мед. вузов. — СПб.: СпецЛит, 2001. -480 с.

Руководство по ортопедической стоматологии. / Под ред. В.Н. Копейкина. — М.: Триада-X, 1998.-495 с.

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Источник

Металлы и сплавы в стоматологии: виды, достоинства и недостатки

При лечении зубов используются самые разные материалы. Это и фосфатный цемент, и композиты, и керамика. Особенное значение имеют металлы. Они необходимы не только для того, чтобы выполнить пломбирование или протезирование. Ведь стоматологу приходится применять во время работы множество инструментов, и почти все они сделаны из металла. Этот материал еще долго будет наиболее универсальным.

Сталь в стоматологии

Как известно, в промышленности и в быту очень широко используется железо и сплавы на его основе, обобщённо называемые чёрными металлами. Из них в стоматологии применяется только сталь нескольких марок. Из неё делаются, в частности, инструменты, применяемые при диагностике и при лечении зубов. Основное преимущество этого сплавов на основе железа – дешевизна при довольно высокой прочности.

Нержавеющую сталь, легированную кобальтом или никелем и хромом можно использовать и при протезировании. Но стоматологи не считают этот сплав оптимальным. Он имеет явно чрезмерный удельный вес и при этом не является химически нейтральным. У пациента может развиться гальваноз, а в некоторых случаях и аллергия.

Благородные металлы в стоматологии

Установку золотых коронок длительное время считали лучшим вариантом протезирования. Дело тут не только в высокой цене материала, но и в его основных свойствах. Золото и сплавы на его составе легко обрабатывать, оно не поддаётся коррозии, не вызывает отторжения и аллергических реакций. Единственный недостаток коронок и пломб из этих материалов – сравнительно лёгкая истираемость.

Используются следующие варианты сплавов:

  • 90% золота, 6% меди и 4% серебра. Этот материал довольно дорогой и при этом недостаточно твёрдый. Его обозначают как ЗлСрМ-900-40 и применяют при изготовлении мостовидных протезов и коронок.
  • 75% золота, 9% платины, 8% меди, 8% серебра. Материал обозначается как ЗлСрПлМ-750-80. Используется при отливке вкладок, элементов бюгельных протезов и кламмеров. Благодаря наличию платины сплав обладает повышенной упругостью.
  • 75% золота, от 5 до 12% кадмия, остальное составляет медь и серебро в равных долях. Материал обозначается как ЗлСрКдМ. Используется обычно как припой.

Из благородных металлов, помимо золота, стоматологи используют также сплавы серебра и палладия. Этот материал обычно более восприимчив к коррозии, но зато он дешевле. Прочностные характеристики не уступают сплавам на основе золота.

Неблагородные металлы в стоматологии

Помимо стали, при лечении зубов может использоваться кобальто-хромовый сплав. Его состав выглядит так:

  • От 3 до 5% никеля. Этот элемент добавляют для упрощения обработки материала, увеличения вязкости и пластичности.
  • От 4 до 5,5% молибдена. Эта добавка улучшает прочностные характеристики.
  • 0,5% железа.
  • 0,5% кремния.
  • 0,2% углерода.
  • 66-67% кобальта. Основа сплава, лёгкий металл с хорошими прочностными характеристиками.
  • От 26 до 30% хрома. Этот элемент повышает устойчивость материала к коррозии.

Сплав используется в первую очередь для литья. Из него можно изготавливать мостовидные и бюгельные протезы, кламмеры и коронки. Кроме того, применяется в качестве материала для каркаса в металлокерамике.

Следует упомянуть также о сплавах на основе титана. Этот металл тяжело обрабатывать, но зато он обладает уникальным соотношением лёгкости и прочности. Используется отдельно или в соединении с никелем.

Источник

28. Неблагородные сплавы металлов. Состав, свойства, применение в ортопедической стоматологии.

Сплавы на основе неблагородных металлов включают:

 хромоникелевую (нержавеющую) сталь;

 вспомогательные сплавы алюминия и бронзы для временного пользования. Кроме того, применяется сплав на основе свинца и олова, отличающийся легкоплавкостью .

Сталь — это сплав железа с углеродом, который в результате первичной кристаллизации приобретает однофазную структуру.

Углерод -твердость, хрупкость, увеличивает способность к коррозии.

Хром- устойчивость против окисления и коррозии, повышает твердость сплава, упругость, уменьшает его пластичность, вязкость и хрупкость.

Никель- пластичность, ковкость, вязкость, прочность, улучшает антикоррозийные свойства.

Титан- уменьшает хрупкость, устраняет склонность стали к межкристаллической коррозии.

Кремний- придает сплаву жидкотекучесть, более однородную структуру, улучшает его литейные свойств.

Применение: зубы стальные для паяных несъемных зубных протезов; каркасы стальные для изготовления мостовидных протезов; кламмеры из проволоки круглого сечения; изготовление несъемных протезов (индивидуальные коронки, литые зубы, фасетки).

Кобальтохромовый сплав= кобальт (придает твердость) 66-67%+-хром 26-30%

изготовление литых коронок, мостовидных протезов, изготовление различных конструкции цельнолитых бюгельных протезов, изготовление каркасов металлокерамических протезов,

— изготовление съемных протезов с литыми базисами, шинирующих аппаратов, литых кламмеров.

Никелехромовые сплавы: благодаря хорошей адгезии с форфором используются для изготовления металлокерамических протезов. Но из-за высокой аллергенности никеля этот сплав имеет ограниченное клиническое применение.

Кобальтохромомолибденовый сплав— молибден 4-5,5%, имеющий большое значения для повышения прочности сплава за счет придания ему мелкозернистости.

Читайте также:  Садовая скамейка чертежи с размерами металл

— высокие технологические и физико- механические свойства;

— температура плавления титанового сплава = 1640С;

— полное отсутствие токсического, термоизолирующего и аллергического воздействия;

— высокая удельная прочность;

— высокая точность воспроизведения мельчайших деталей рельефа протезного ложа.

используется для изготовления литых коронок, мостовидных протезов, каркасов бюгельных, шинирующих протезов, литых металлических базисов.

29. Изменение механических свойств нержавеющей стали после холодной деформации и наклепа. Виды коррозии. Методы борьбы с ней

Холодная деформация(наклеп) — обработка металла давлением, осуществляемая при комнатной или незначительно отличающейся от неё температуре.

Характеризуется изменением формы отдельно взятого зерна. Зерна вытягиваются в направлении течения металла, образуя строчечную микроструктуру При холодной деформации формоизменение сопровождается изменением механических и физико-механических свойств металла, по мере увеличения степени деформации возрастают характеристики прочности, а характеристики пластичности и сопротивление коррозии снижаются.

При холодной пластической деформации металла происходит скольжение компонентов его структуры относительно друг друга, зеренная (типа зерновая, если кто не понял) структура металла изменяется, происходит фрагментация зерен, движение атомов и искажение атомной решетки. За счет увеличения плотности дислокаций, искажений атомной решетки и фрагментации зерен возникает упрочнение металла.

Коррозия – процесс разрушения металла в результате химического или электро-химического взаимодействия со средой. Коррозия ведет к потере металла и уменьшению его прочности.

Возникает при однородной структуре металла (чистые металлы, твердые растворы). Происходит по всей поверхности металла. Данный вид коррозии менее опасен, т.к. дефект металла виден.

Возникает при неоднородности сплава, в местах внутреннего напряжения, при грубой структуре сплава. Разрушения носят местный характер.

Возникает на границе зерен (кристаллов), т.к. именно там агрессивная среда проникает внутрь; возможен в нержавеющих сталях, сплавах алюминия. Данный вид коррозии очень опасен, т.к. потеря прочности происходит незаметно.

Методы борьбы с коррозией:По механизму действия все методы антикоррозионной защиты можно разделить на две основные группы: электрохимические, оказывающие влияние на потенциал металла или его критические значения (легирование металлов — добавление хрома никеля, титана) и механические, изолирующие металл от воздействия окружающей среды созданием защитной пленки и покрытий. Оксидирование, т. е. покрытие окисными пленками, один из наиболее распространенных видов защиты от коррозии. Фосфатирование — на поверхности детали образуется пленка не растворимых в воде фосфорнокислых соединений марганца и железа. Фосфатированная поверхность, покрытая лаком, является высококачественной защитой от коррозии.

Металлическое покрытие — это процесс нанесения тонкого слоя металла, обладающего достаточной коррозионной стойкостью. Неметаллические покрытия производят путем нанесения на поверхности изделия эмалей, красок, лаков, смазок, резины и эбонита (гуммирование).

Источник

Материаловедение по ортопедической стоматологии

Металлы и их сплавы — Трезубов

3.1. Общие сведения о металлах, сплавах металлов и их свойствах

Металлами являются вещества, характеризующиеся в обычных условиях высокими электро- и теплопроводностью, ковкостью, «металлическим» блеском, непрозрачностью и другими свойствами, обусловленными наличием в их кристаллической решетке большого количества не связанных с атомными ядрами подвижных электронов проводимости.

В технике металлы принято делить на черные (железо и сплавы на его основе) и цветные (все остальные).

Свойства металлов объясняются особенностями их строения:

─ расположением и характером движения электронов в атомах;

─ расположением атомов, ионов и молекул в пространстве;

─ размерами, формой и характером кристаллических образований.

Особенности атомного строения определяют характер взаимодействия металлов, способность их давать различного рода соединения, в которые входят несколько металлов, металлы с неметаллами и т.д.

При разных температурах некоторые химические элементы имеют два и более устойчивых типа кристаллических решеток. Существование одного металла в различных кристаллических формах (модификациях) при разных температурах называется полиморфизмом, или аллотропией, а переход из одного строения в другое — полиморфным (аллотропическим) превращением. Аллотропические формы, получающиеся в результате полиморфного превращения, обычно обозначают начальными буквами греческого алфавита.

К таким полиморфным металлам относятся, например, кобальт (Со), олово (Sn), марганец (Mn), железо (Fe). В свою очередь, изменение строения кристаллической решетки вызывает изменение свойств — механических, химических и магнитных, электропроводности, теплопроводности, теплоемкости и др.

К металлам, которые имеют только один тип кристаллической решетки и называются изоморфными, относятся алюминий (Аl), медь (Cu), никель (Ni), хром (Сr), ванадий (W) и др.

Наиболее полную информацию о строении и свойствах металлов получают при использовании комплекса методов исследований:

─ структурных (основаны на макроскопическом, микроскопическом анализах строения металла или сплава и др.);

─ физических (основаны на измерении различных физических свойств: тепловых, магнитных и др.).

Так, например, метод элементного микроанализа изменения поверхности стоматологических сплавов в условиях ротовой полости применяется многими исследователями (Hani Н. et al., 1989).

Металлические сплавы — это макроскопически однородные системы, состоящие из двух или более металлов с характерными металлическими свойствами. В широком смысле сплавами называются любые однородные системы, получаемые сплавлением металлов, неметаллов, оксидов, органических веществ.

Структура и свойства чистых металлов (см. табл. 21) существенно отличаются от структуры и свойств сплавов (см. табл. 22), состоящих из двух и более металлов.

По количеству элементов (компонентов сплава) различают двух-, трех- или многокомпонентные сплавы (см. табл. 19, 28, 31, 35, 38—40).

Образование новых однородных веществ при взаимном проникновении атомов называют фазами сплава.

В расплавленном виде все компоненты обычно находятся в атомарном состоянии, образуя неограниченный жидкий однородный раствор, в любой точке которого химический состав статистически одинаков. При затвердевании расплава атомы компонентов укладываются в порядке кристаллической решетки, образуя твердое кристаллическое вещество — сплав.

Существуют три типа взаимоотношений компонентов сплава:

  1. образование механической смеси, когда каждый элемент кристаллизуется самостоятельно, при этом свойства сплава будут усредненными свойствами элементов, которые его образуют;
  2. образование твердого раствора, когда атомы компонентов образуют кристаллическую решетку одного из элементов, являющегося растворителем, при этом тип решетки основного металла сохраняется;
  3. образование химических соединений, когда при кристаллизации разнородные атомы могут соединяться в определенной пропорции с образованием нового типа решетки, отличающейся от решеток металлов сплава. Образование химического соединения — сложный процесс, при котором создается новое вещество с новыми качествами, а решетка при этом имеет более сложное строение. Соединение теряет основное свойство металла — способность к пластической деформации, становится хрупким.
Читайте также:  Инструменты для резки металла пила

Соответственно этому, свойства сплавов будут зависеть от того, какие фазы в них образуются: твердые растворы, химические соединения или смеси чистых металлов. Если атомные объемы двух металлов и их температуры плавления резко отличаются, то в жидком состоянии такие элементы обладают, как правило, ограниченной растворимостью.

В то же время неограниченную растворимость, или способность образовывать твердые растворы в любых пропорциях, имеют только металлы с кристаллической решеткой одного типа. Металлы, расположенные недалеко друг от Друга в таблице Менделеева (Сu29 и Ni28; Fe26 и Ni28; Fe26 и Cr24; Fe26 и Co27; Co27 и Ni28) или расположенные в одной группе (As33 и Sb51; Au79 и Ag47; Au79 и Cu29; Bi83 и Sb51), имеют неограниченную растворимость.

Таким образом, взаимодействие элементов в сплавах и характер образующейся структуры определяются положением элементов в таблице Менделеева типом кристаллической решетки, размерами атомов, т.е. физической природой элементов.

Зависимость свойств от состава сплавов:

─ в сплавах, имеющих структуру механических смесей, свойства изменяются в основном прямолинейно. Некоторые свойства механических смесей, в первую очередь твердость и прочность, зависят от размеров частиц (от степени дисперсности) и значительно повышаются при измельчении;

─ в сплавах-твердых растворах — свойства изменяются по криволинейной зависимости;

─ при образовании химических соединений свойства изменяются скачкообразно.

Многие физические и механические свойства сплавов четко зависят от структуры, однако некоторые технологические свойства, такие как литейные (способность обеспечить хорошее качество отливки) или свариваемость, зависят не столько от структуры, сколько от того, в каких температурных условиях проходило затвердевание сплавов.

Так, например, стоматологические сплавы золота, отлитые в форму и быстро охлажденные в воде, будут иметь вид твердого раствора, отличающегося характерной мягкостью, ковкостью и меньшей прочностью, чем сплавы с упорядоченным расположением атомов (Копейкин В.Н., 1995). Однако если ту же отливку охлаждать медленно до комнатной температуры, то твердый раствор, превалирующий при температуре более 424°С, полностью переходит в фазу AuCu путем перераспределения атомов в пространственной кристаллической решетке в более упорядоченную структуру. Это приводит к повышению прочности и твердости при потере ковкости сплава. Сплавы с высоким содержанием золота (выше 88%) не образуют упорядоченной фазы.

Поэтому о зависимости механических и физических свойств однофазных сплавов (α и β) говорят следующие положения, известные из курса металловедения:

─ твердость, прочность и электросопротивление твердых растворов выше, чем у чистых металлов;

─ электропроводность и температурный коэффициент электросопротивления у твердых растворов ниже, чем у чистых металлов;

─ электрохимический потенциал при этом изменяется по плавной кривой.

Помимо свойств металлической матрицы, имеющей определенную кристаллическую решетку и тем самым определяющую основные параметры механических свойств, на последние может оказывать влияние дополнительное легирование такими элементами, как молибден, вольфрам, ниобий, углерод, азот и др. Присутствие их в сплавах даже в небольших количествах значительно повышает прочность, износостойкость, жаропрочность и другие свойства, необходимые при эксплуатации конструкций.

Добавка небольших количеств (0,005%) иридия и рутения превращает грубую зернистую структуру сплавов золота в мелкозернистую, что дает возможность улучшить на 30% прочность на растяжение и предел прочности при удлинении, не влияя при этом на твердость и предел текучести. Особенно эффективно увеличивается прочность при легировании кобальтохромовых сплавов 6% молибденом и дополнительно 1—2% ниобия в присутствии 0,3% углерода. В металлических сплавах образуются различные химические соединения между двумя или несколькими металлами (их называют интерметаллидами) так и между металлом и неметаллом (карбиды, оксиды и т.д.).

Наличие неметаллических включений в структуре сплава ведет к образованию усталости, трещин, внутренних пор и полостей, коррозионному растрескиванию отливок, что приводит в конечном счете к разрушению. Неметаллические включения играют существенную роль в процессе вязкого и усталостного разрушения.

Основу неметаллических включений в сплаве Виталлиум составляют марганец и кремний. В кобальтохромовом сплаве (КХС) содержатся включения нитридов титана и силикаты. Приведенные в таблице 27 данные свидетельствуют, что у образца, испытавшего циклическую нагрузку, произошли изменения почти по всем параметрам: значительно уменьшены пределы упругости и текучести прочности, напряжения, разрушения, относительного удлинения и сужения. Это свидетельствует о тенденции к усталости металла.

В результате циклических напряжений металл «устает», прочность его снижается (см. табл. 27) и наступает разрушение образца (протеза). Такое явление называют усталостью, а сопротивление усталости — выносливостью. Разрушение от усталости происходит всегда внезапно вследствие накопления металлом необратимых изменений, которые приводят к возникновению микроскопических трещин — трещин усталости, возникающих в поверхностных зонах образца. При этом чем больше на поверхности царапин, выбоин и других дефектов, вызывающих концентрацию напряжения, тем быстрее образуются трещины усталости.

В связи с усталостью металла появляются микротрещины на границе неметаллических включений, зерен металла, которые в процессе циклической нагрузки увеличиваются, образуя магистральную трещину, приводящую к разрушению металла.

♦ Основной характеристикой, определяемой при испытании на усталость материала, является предел выносливости — наибольшее напряжение, которое может выдержать материал без разрушения при произвольно большом числе перемен (циклов) нагрузки. Максимальное напряжение, не вызывающее разрушения, соответствует пределу выносливости.

Кроме механических испытаний, металлические материалы подвергаются технологическим испытаниям (изгиб, перегиб и др.) с целью определения их пригодности к различным технологическим операциям в процессе использования. Приложение к образцу нагрузки при механическом испытании приводит к деформации (см. с. 11).

Источник

Поделиться с друзьями
Металл
Adblock
detector