- Понятие о металлургии: общие способы получения металлов
- 1. Нахождение металлов в природе
- 2. Получение активных металлов
- 3. Получение малоактивных и неактивных металлов
- 3.1. Обжиг сульфидов
- 3.2. Восстановление металлов углем
- 3.3. Восстановление металлов угарным газом
- 3.4. Восстановление металлов более активными металлами
- 3.5. Восстановление металлов из оксидов водородом
- 4. Производство чугуна
- Добавить комментарий Отменить ответ
- Щелочные металлы. Химия щелочных металлов и их соединений
- Щелочные металлы
- Положение в периодической системе химических элементов
- Электронное строение щелочных металлов и основные свойства
- Физические свойства
- Нахождение в природе
- Способы получения
- Качественные реакции
- Химические свойства
- Оксиды щелочных металлов
- Способы получения
- Химические свойства
- Пероксиды щелочных металлов
- Химические свойства
- Гидроксиды щелочных металлов (щелочи)
- Способы получения
- Химические свойства
- Соли щелочных металлов
- Нитраты и нитриты щелочных металлов
Понятие о металлургии: общие способы получения металлов
Понятие о металлургии: общие способы получения металлов
Металлургия — это наука о промышленных способах получения металлов. Различают черную и цветную металлургию.
Черная металлургия — это производство железа и его сплавов (сталь, чугун и др.).
Цветная металлургия — производство остальных металлов и их сплавов.
Широкое применение находят сплавы металлов. Наиболее распространенные сплавы железа — чугун и сталь.
Чугун — это сплав железа, в котором содержится 2-4 масс. % углерода, а также кремний, марганец и небольшие количества серы и фосфора.
Сталь — это сплав железа, в котором содержится 0,3-2 масс. % углерода и небольшие примеси других элементов.
Легированные стали — это сплавы железа с хромом, никелем, марганцем, кобальтом, ванадием, титаном и другими металлами. Добавление металлов придает стали дополнительные свойства. Так, добавление хрома придает сплаву прочность, а добавление никеля придает стали пластичность.
Основные стадии металлургических процессов:
- Обогащение природной руды (очистка, удаление примесей)
- Получение металла или его сплава.
- Механическая обработка металла
1. Нахождение металлов в природе
Большинство металлов встречаются в природе в виде соединений. Наиболее распространенный металл в земной коре — алюминий. Затем железо, кальций, натрий и другие металлы.
Нахождение металлов в природе | ||
Активные металлы — в виде солей | Металлов средней активности — в виде оксидов и сульфидов | Малоактивные металлы -в виде простых веществ |
Хлорид натрия NaCl 2. Получение активных металловАктивные металлы (щелочные и щелочноземельные) классическими «химическими» методами получить из соединений нельзя. Такие металлы в виде ионов — очень слабые окислители, а в простом виде — очень сильные восстановители, поэтому их очень сложно восстановить из катионов в простые вещества. Чем активнее металл, тем сложнее его получить в чистом виде — ведь он стремится прореагировать с другими веществами. Получить такие металлы можно, как правило, электролизом расплавов солей, либо вытеснением из солей другими металлами в жестких условиях. Натрий в промышленности получают электролизом расплава хлорида натрия с добавками хлорида кальция: 2NaCl = 2Na + Cl2 Калий получают пропусканием паров натрия через расплав хлорида калия при 800°С: KCl + Na = K↑ + NaCl Литий можно получить электролизом расплава хлорида лития в смеси с KCl или BaCl2 (эти соли служат для понижения температуры плавления смеси): 2LiCl = 2Li + Cl2 Цезий можно получить нагреванием смеси хлорида цезия и специально подготовленного кальция: Са + 2CsCl = 2Cs + CaCl2 Магний получают электролизом расплавленного карналлита или хлорида магния с добавками хлорида натрия при 720–750°С: Кальций получают электролизом расплавленного хлорида кальция с добавками фторида кальция: Барий получают из оксида восстановлением алюминием в вакууме при 1200 °C: 4BaO+ 2Al = 3Ba + Ba(AlO2)2 Алюминий получают электролизом раствора оксида алюминия Al2O3 в криолите Na3AlF6: 3. Получение малоактивных и неактивных металловМеталлы малоактивные и неактивные восстанавливают из оксидов углем, оксидом углерода (II) СО или более активным металлом. Сульфиды металлов сначала обжигают. 3.1. Обжиг сульфидовПри обжиге сульфидов металлов образуются оксиды: 2ZnS + 3O2 → 2ZnO + 2SO2 Металлы получают дальнейшим восстановлением оксидов. 3.2. Восстановление металлов углемЧистые металлы можно получить восстановлением из оксидов углем. При этом до металлов восстанавливаются только оксиды металлов, расположенных в ряду электрохимической активности после алюминия. Например , железо получают восстановлением из оксида углем: 2Fe2O3 + 6C → 2Fe + 6CO ZnO + C → Zn + CO Оксиды металлов, расположенных в ряду электрохимической активности до алюминия, реагируют с углем с образованием карбидов металлов: CaO + 3C → CaC2 + CO 3.3. Восстановление металлов угарным газомОксид углерода (II) реагирует с оксидами металлов, расположенных в ряду электрохимической активности после алюминия. Например , железо можно получить восстановлением из оксида с помощью угарного газа: 3.4. Восстановление металлов более активными металламиБолее активные металлы вытесняют из оксидов менее активные. Активность металлов можно примерно оценить по электрохимическому ряду металлов: Восстановление металлов из оксидов другими металлами — распространенный способ получения металлов. Часто для восстановления металлов применяют алюминий и магний. А вот щелочные металлы для этого не очень подходят – они слишком химически активны, что создает сложности при работе с ними. Алюмотермия – это восстановление металлов из оксидов алюминием. Например : алюминий восстанавливает оксид меди (II) из оксида: 3CuO + 2Al = Al2O3 + 3Cu Магниетермия – это восстановление металлов из оксидов магнием. CuO + Mg = Cu + MgO Железо можно вытеснить из оксида с помощью алюминия: При алюмотермии образуется очень чистый, свободный от примесей углерода металл. Активные металлы вытесняют менее активные из растворов их солей. Например , при добавлении меди (Cu) в раствор соли менее активного металла – серебра (AgNO3) произойдет химическая реакция: 2AgNO3 + Cu = Cu(NO3)2 + 2Ag Медь покроется белыми кристаллами серебра. При добавлении железа (Fe) в раствор соли меди (CuSO4) на железном гвозде появился розовый налет металлической меди: CuSO4 + Fe = FeSO4 + Cu При добавлении цинка в раствор нитрата свинца (II) на цинке образуется слой металлического свинца: 3.5. Восстановление металлов из оксидов водородомВодород восстанавливает из оксидов только металлы, расположенные в ряду активности правее алюминия. Как правило, взаимодействие оксидов металлов с водородом протекает в жестких условиях – под давлением или при нагревании. CuO + H2 = Cu + H2O 4. Производство чугунаЧугун получают из железной руды в доменных печах. Печь последовательно загружают сверху шихтой, флюсами, коксом, затем снова рудой, коксом и т.д. 1- загрузочное устройство, 2 — колошник, 3 — шахта, 4 — распар, 5 — горн, 6 — регенератор Доменная печь имеет форму двух усеченных конусов, соединенных основаниями. Верхняя часть доменной печи — колошник, средняя — шахта, а нижняя часть — распар. В нижней части печи находится горн. Внизу горна скапливается чугун и шлак и отверстия, через которые чугун и шлак покидают горн: чугун через нижнее, а шлак через верхнее. Наверху печи расположено автоматическое загрузочное устройство. Оно состоит из двух воронок, соединенных друг с другом. Руда и кокс сначала поступают в верхнюю воронку, а затем в нижнюю. Из нижней воронки руда и кокс поступают в печь. во время загрузки руды и кокса печь остается закрытой, поэтому газы не попадают в атмосферу, а попадают в регенераторы. В регенераторах печной газ сгорает. Шихта — это железная руда, смешанная с флюсами. Снизу в печь вдувают нагретый воздух, обогащенный кислородом, кокс сгорает: Образующийся углекислый газ поднимается вверх и окисляет кокс до оксида углерода (II): CO2 + С = 2CO Оксид углерода (II) (угарный газ) — это основной восстановитель железа из оксидов в данных процессах. Последовательность восстановления железа из оксида железа (III): Последовательность восстановления оксида железа (III): FeO + CO → Fe + CO2 Суммарное уравнение протекающих процессов: При этом протекает также частичное восстановление примесей оксидов других элементов (кремния, марганца и др.). Эти вещества растворяются в жидком железе. Чтобы удалить из железной руды тугоплавкие примеси (оксид кремния (IV) и др.). Для их удаления используют флюсы и плавни (как правило, известняк CaCO3 или доломит CaCO3·MgCO3). Флюсы разлагаются при нагревании: и образуют с тугоплавкими примесями легкоплавкие вещества (шлаки), которые легко можно удалить из реакционной смеси: CaO + SiO2 → CaSiO3 Добавить комментарий Отменить ответЭтот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев. Источник Щелочные металлы. Химия щелочных металлов и их соединенийЩелочные металлы Щелочные металлыПоложение в периодической системе химических элементовЩелочные металлы расположены в главной подгруппе первой группы периодической системы химических элементов Д.И. Менделеева (или просто в 1 группе в длиннопериодной форме ПСХЭ). Это литий Li, натрий Na, калий K, цезий Cs, рубидий Rb и франций Fr. Электронное строение щелочных металлов и основные свойстваЭлектронная конфигурация внешнего энергетического уровня щелочных металлов: ns 1 , на внешнем энергетическом уровне находится 1 s-электрон. Следовательно, типичная степень окисления щелочных металлов в соединениях +1. Рассмотрим некоторые закономерности изменения свойств щелочных металлов. В ряду Li-Na-K-Rb-Cs-Fr, в соответствии с Периодическим законом, увеличивается атомный радиус , усиливаются металлические свойства , ослабевают неметаллические свойства , уменьшается электроотрица-тельность . Физические свойстваВсе щелочные металлы — вещества мягкие, серебристого цвета. Свежесрезанная поверхность их обладает характерным блеском. Кристаллическая решетка щелочных металлов в твёрдом состоянии — металлическая. Следовательно, щелочные металлы обладают высокой тепло- и электропроводимостью. Кипят и плавятся при низких температурах. Они имеют также небольшую плотность. Нахождение в природеКак правило, щелочные металлы в природе присутствуют в виде минеральных солей: хлоридов, бромидов, йодидов, карбонатов, нитратов и др. Основные минералы , в которых присутствуют щелочные металлы: Поваренная соль, каменная соль, галит — NaCl — хлорид натрия Сильвин KCl — хлорид калия Сильвинит NaCl · KCl Глауберова соль Na2SO4⋅10Н2О – декагидрат сульфата натрия Едкое кали KOH — гидроксид калия Поташ K2CO3 – карбонат калия Поллуцит — алюмосиликат сложного состава с высоким содержанием цезия: Способы полученияЛитий получают в промышленности электролизом расплава хлорида лития в смеси с KCl или BaCl2 (эти соли служат для понижения температуры плавления смеси): 2LiCl = 2Li + Cl2 Натрий получают электролизом расплава хлорида натрия с добавками хлорида кальция: 2NaCl (расплав) → 2Na + Cl2 Электролитом обычно служит смесь NaCl с NaF и КСl (что позволяет проводить процесс при 610–650°С). Калий получают также электролизом расплавов солей или расплава гидроксида калия. Также распространены методы термохимического восстановления: восстановление калия из расплавов хлоридов или гидроксидов. В качестве восстановителей используют пары натрия, карбид кальция, алюминий, кремний: KCl + Na = K↑ + NaCl KOH + Na = K↑ + NaOH Цезий можно получить нагреванием смеси хлорида цезия и специально подготовленного кальция: Са + 2CsCl → 2Cs + CaCl2 В промышленности используют преимущественно физико-химические методы выделения чистого цезия: многократную ректификацию в вакууме. Качественные реакцииКачественная реакция на щелочные металлы — окрашивание пламени солями щелочных металлов . Цвет пламени: Химические свойства1. Щелочные металлы — сильные восстановители . Поэтому они реагируют почти со всеми неметаллами . 1.1. Щелочные металлы легко реагируют с галогенами с образованием галогенидов: 2K + I2 = 2KI 1.2. Щелочные металлы реагируют с серой с образованием сульфидов: 2Na + S = Na2S 1.3. Щелочные металлы активно реагируют с фосфором и водородом (очень активно). При этом образуются бинарные соединения — фосфиды и гидриды: 3K + P = K3P 2Na + H2 = 2NaH 1.4. С азотом литий реагирует при комнатной температуре с образованием нитрида: Остальные щелочные металлы реагируют с азотом при нагревании. 1.5. Щелочные металлы реагируют с углеродом с образованием карбидов, преимущественно ацетиленидов: 1.6. При взаимодействии с кислородом каждый щелочной металл проявляет свою индивидуальность: при горении на воздухе литий образует оксид, натрий – преимущественно пероксид, калий и остальные металлы – надпероксид. Цезий самовозгорается на воздухе, поэтому его хранят в запаянных ампулах. Видеоопыт самовозгорания цезия на воздухе можно посмотреть здесь. 2. Щелочные металлы активно взаимодействуют со сложными веществами: 2.1. Щелочные металлы бурно (со взрывом) реагируют с водой . Взаимодействие щелочных металлов с водой приводит к образованию щелочи и водорода. Литий реагирует бурно, но без взрыва. Например , калий реагирует с водой очень бурно: 2K 0 + H2 + O = 2 K + OH + H2 0 Видеоопыт: взаимодействие щелочных металлов с водой можно посмотреть здесь. 2.2. Щелочные металлы взаимодействуют с минеральными кислотами (с соляной, фосфорной и разбавленной серной кислотой) со взрывом. При этом образуются соль и водород. Например , натрий бурно реагирует с соляной кислотой : 2Na + 2HCl = 2NaCl + H2↑ 2.3. При взаимодействии щелочных металлов с концентрированной серной кислотой выделяется сероводород. Например , при взаимодействии натрия с концентрированной серной кислотой образуется сульфат натрия, сероводород и вода: 2.4. Щелочные металлы реагируют с азотной кислотой. При взаимодействии с концентрированной азотной кислотой образуется оксид азота (I): С разбавленной азотной кислотой образуется молекулярный азот: При взаимодействии щелочных металлов с очень разбавленной азотной кислотой образуется нитрат аммония: 2.5. Щелочные металлы могут реагировать даже с веществами, которые проявляют очень слабые кислотные свойства . Например, с аммиаком, ацетиленом (и прочими терминальными алкинами), спиртами , фенолом и органическими кислотами . Например , при взаимодействии лития с аммиаком образуются амиды и водород: Ацетилен с натрием образует ацетиленид натрия и также водород: Н ─ C ≡ С ─ Н + 2Na → Na ─ C≡C ─ Na + H2 Фенол с натрием реагирует с образованием фенолята натрия и водорода: Метанол с натрием образуют метилат натрия и водород: Уксусная кислота с литием образует ацетат лития и водород: 2СH3COOH + 2Li → 2CH3COOLi + H2↑ Щелочные металлы реагируют с галогеналканами (реакция Вюрца). Например , хлорметан с натрием образует этан и хлорид натрия: 2.6. В расплаве щелочные металлы могут взаимодействовать с некоторыми солями . Обратите внимание! В растворе щелочные металлы будут взаимодействовать с водой, а не с солями других металлов. Например , натрий взаимодействует в расплаве с хлоридом алюминия : 3Na + AlCl3 → 3NaCl + Al Оксиды щелочных металловСпособы полученияОксиды щелочных металлов (кроме лития) можно получить только к освенными методами : взаимодействием натрия с окислителями в расплаве: 1. О ксид натрия можно получить взаимодействием натрия с нитратом натрия в расплаве: 2. Взаимодействием натрия с пероксидом натрия : 3. Взаимодействием натрия с расплавом щелочи : 2Na + 2NaOН → 2Na2O + Н2↑ 4. Оксид лития можно получить разложением гидроксида лития : 2LiOН → Li2O + Н2O Химические свойстваОксиды щелочных металлов — типичные основные оксиды . Вступают в реакции с кислотными и амфотерными оксидами, кислотами, водой. 1. Оксиды щелочных металлов взаимодействуют с кислотными и амфотерными оксидами : Например , оксид натрия взаимодействует с оксидом фосфора (V): Оксид натрия взаимодействует с амфотерным оксидом алюминия: 2. Оксиды щелочных металлов взаимодействуют с кислотами с образованием средних и кислых солей (с многоосновными кислотами). Например , оксид калия взаимодействует с соляной кислотой с образованием хлорида калия и воды: K2O + 2HCl → 2KCl + H2O 3. Оксиды щелочных металлов активно взаимодействуют с водой с образованием щелочей. Например , оксид лития взаимодействует с водой с образованием гидроксида лития: Li2O + H2O → 2LiOH 4. Оксиды щелочных металлов окисляются кислородом (кроме оксида лития): оксид натрия — до пероксида, оксиды калия, рубидия и цезия – до надпероксида. Пероксиды щелочных металловХимические свойстваСвойства пероксидов очень похожи на свойства оксидов. Однако пероксиды щелочных металлов, в отличие от оксидов, содержат атомы кислорода со степенью окисления -1. Поэтому они могут могут проявлять как окислительные , так и восстановительные свойства. 1. Пероксиды щелочных металлов взаимодействуют с водой . При этом на холоде протекает обменная реакция, образуются щелочь и пероксид водорода: При нагревании пероксиды диспропорционируют в воде, образуются щелочь и кислород: 2. Пероксиды диспропорционируют при взаимодействии с кислотными оксидами . Например , пероксид натрия реагирует с углекислым газом с образованием карбоната натрия и кислорода: 3. При взаимодействии с минеральными кислотами на холоде пероксиды вступают в обменную реакцию. При этом образуются соль и перекись водорода: При нагревании пероксиды, опять-таки, диспропорционируют: 4. Пероксиды щелочных металлов разлагаются при нагревании, с образованием оксида и кислорода: 5. При взаимодействии с восстановителями пероксиды проявляют окислительные свойства. Например , пероксид натрия с угарным газом реагирует с образованием карбоната натрия: Пероксид натрия с сернистым газом также вступает в ОВР с образованием сульфата натрия: 6. При взаимодействии с сильными окислителями пероксиды проявляют свойства восстановителей и окисляются, как правило, до молекулярного кислорода. Например , при взаимодействии с подкисленным раствором перманганата калия пероксид натрия образует соль и молекулярный кислород: Гидроксиды щелочных металлов (щелочи)Способы получения1. Щелочи получают электролизом растворов хлоридов щелочных метал-лов: 2NaCl + 2H2O → 2NaOH + H2 + Cl2 2. При взаимодействии щелочных металлов, их оксидов, пероксидов, гидридов и некоторых других бинарных соединений с водой также образуются щелочи. Например , натрий, оксид натрия, гидрид натрия и пероксид натрия при растворении в воде образуют щелочи: 2Na + 2H2O → 2NaOH + H2 Na2O + H2O → 2NaOH 2NaH + 2H2O → 2NaOH + H2 3. Некоторые соли щелочных металлов (карбонаты, сульфаты и др.) при взаимодействии с гидроксидами кальция и бария также образуют щелочи. Например , карбонат калия с гидроксидом кальция образует карбонат кальция и гидроксид калия: Химические свойства1. Гидроксиды щелочных металлов реагируют со всеми кислотами (и сильными, и слабыми, и растворимыми, и нерастворимыми). При этом образуются средние или кислые соли, в зависимости от соотношения реагентов. Например , гидроксид калия с фосфорной кислотой реагирует с образованием фосфатов, гидрофосфатов или дигидрофосфатов: 2. Гидроксиды щелочных металлов реагируют с кислотными оксидами . При этом образуются средние или кислые соли, в зависимости от соотношения реагентов. Например , гидроксид натрия с углекислым газом реагирует с образованием карбонатов или гидрокарбонатов: Необычно ведет себя оксид азота (IV) при взаимодействии с щелочами. Дело в том, что этому оксиду соответствуют две кислоты — азотная (HNO3) и азотистая (HNO2). «Своей» одной кислоты у него нет. Поэтому при взаимодействии оксида азота (IV) с щелочами образуются две соли- нитрит и нитрат: А вот в присутствии окислителя, например, молекулярного кислорода, образуется только одна соль — нитрат, т.к. азот +4 только повышает степень окисления: 3. Гидроксиды щелочных металлов реагируют с амфотерными оксидами и гидроксидами . При этом в расплаве образуются средние соли, а в растворе комплексные соли. Например , гидроксид натрия с оксидом алюминия реагирует в расплаве с образованием алюминатов: в растворе образуется комплексная соль — тетрагидроксоалюминат: Еще пример : гидроксид натрия с гидроксидом алюминия в расплаве образут также комплексную соль: 4. Щелочи также взаимодействуют с кислыми солями. При этом образуются средние соли, или менее кислые соли. Например : гидроксид калия реагирует с гидрокарбонатом калия с образованием карбоната калия: 5. Щелочи взаимодействуют с простыми веществами-неметаллами (кроме инертных газов, азота, кислорода, водорода и углерода). При этом кремний окисляется щелочами до силиката и водорода: Фтор окисляет щелочи. При этом выделяется молекулярный кислород: Другие галогены, сера и фосфор — диспропорционируют в щелочах: Сера взаимодействует с щелочами только при нагревании: 6. Щелочи взаимодействуют с амфотерными металлами , кроме железа и хрома . При этом в расплаве образуются соль и водород: В растворе образуются комплексная соль и водород: 2NaOH + 2Al + 6Н2О = 2Na[Al(OH)4] + 3Н2 7. Гидроксиды щелочных металлов вступают в обменные реакции с растворимыми солями . С щелочами взаимодействуют соли тяжелых металлов. Например , хлорид меди (II) реагирует с гидроксидом натрия с образованием хлорида натрия и осадка гидроксида меди (II): 2NaOH + CuCl2 = Cu(OH)2↓+ 2NaCl Также с щелочами взаимодействуют соли аммония. Например , при взаимодействии хлорида аммония и гидроксида натрия образуются хлорид натрия, аммиак и вода: NH4Cl + NaOH = NH3 + H2O + NaCl 8. Гидроксиды всех щелочных металлов плавятся без разложения , гидроксид лития разлагается при нагревании до температуры 600°С: 2LiOH → Li2O + H2O 9. Все гидроксиды щелочных металлов проявляют свойства сильных оснований . В воде практически нацело диссоциируют , образуя щелочную среду и меняя окраску индикаторов. NaOH ↔ Na + + OH — 10. Гидроксиды щелочных металлов в расплаве подвергаются электролизу . При этом на катоде восстанавливаются сами металлы, а на аноде выделяется молекулярный кислород: 4NaOH → 4Na + O2 + 2H2O Соли щелочных металловНитраты и нитриты щелочных металловНитраты щелочных металлов при нагревании разлагаются на нитриты и кислород. Исключение — нитрат лития. Он разлагается на оксид лития, оксид азота (IV) и кислород. Например , нитрат натрия разлагается при нагревании на нитрит натрия и молекулярный кислород: Нитраты щелочных металлов в реакциях могут выступать в качестве окислителей. Нитриты щелочных металлов могут быть окислителями или восстановителями. В щелочной среде нитраты и нитриты — очень мощные окислители. Например , нитрат натрия с цинком в щелочной среде восстанавливается до аммиака: Сильные окислители окисляют нитриты до нитратов. Например , перманганат калия в кислой среде окисляет нитрит натрия до нитрата натрия: Источник Adblockdetector |