СЛЕДЫ ГОРЕНИЯ. ПРИЗНАКИ ОЧАГА ПОЖАРА
Тепловое воздействие на материалы и конструкции в ходе пожара приводит к формированию на них следов термических поражений, специфичных для каждого вида материала. В зависимости от того, насколько сильно материал разрушен под воздействием тепла пожара, термические поражения могут либо наблюдаться визуально, либо быть невидимы глазу, и выявляться с помощью специальных инструментальных методов и технических средств. Существует понятие «степень термических поражений»; под этим термином понимается величина термических разрушений материала. Она может выражаться качественной оценкой (например, «незначительные разрушения бетона с образованием мелких трещин» или «сильные разрушения с отслоением защитного слоя») или количественной, через какую-либо измеренную величину или параметр, прямо или косвенно связанный с процессом и последствиями термического разрушения. Примером количественной оценки степени термического поражения может быть измерение глубины обугливания древесины или величины деформации стальной балки.
Степень термического поражения любого материала определяется двумя основными параметрами — температурой и длительностью нагрева, причем влияние температуры более существенно, нежели длительности.
Изучение и фиксация следов горения и теплового воздействия на материалы и конструкции необходимы,
прежде всего, для выявления места возникновения (очага) пожара и путей распространения горения [16-20].
Описание термических поражений в протоколе осмотра места пожара имеет целью зафиксировать подробно, насколько это возможно, обстановку после пожара.
Следы горения. Термические поражения отдельных материалов
Древесина и древесные композиционные материалы
Поражения древесины на пожаре возникают в результате ее термического разложения под воздействием внешнего тепла. Результатом термического разложения древесины является ее обугливание. При этом выделяются горючие газообразные продукты термического разложения, которые при достижении определенной концентрации в воздухе способны загораться и обеспечивать пламенное горение над поверхностью древесины. Образовавшийся угольный слой также способен выгорать, частично и полностью.
Первые признаки термического разложения древесины — потемнение ее поверхности — проявляются при температуре выше 110°С. Активное тление древесины, начинается при температуре порядка 300°С; самовоспламенение древесины происходит примерно при 400°С.
Глубина обугливания древесины последовательно возрастает с увеличением температуры и длительности пиролиза. Поэтому измерение глубины обугливания (правила измерения см. ниже, вразд. 5.2) может применяться для фиксации и оценки изменения степени термического поражения по длине и высоте конструкции, определения направленности теплового воздействия или более интенсивного теплового воздействия.
Внешний вид угля
Внешний вид угля несет определенную информацию об условиях, в которых он образовался.
Уголь легкий, рыхлый, с крупными трещинами образуется обычно при интенсивном пламенном горении.
Уголь плотный, тяжелый, иногда с коричневатым оттенком и даже сохранившейся текстурой древесины (рисунком годовых колец) образуется при низкотемпературном пиролизе (тлении), когда процесс обугливания происходит медленно, и летучие выделяются понемногу, уходя через мелкие трещины и не разрыхляя уголь.
Полное выгорание древесины
Проявляется в сквозных прогарах и при выгорании до золы (порошка серого цвета). Этот признак экстремально высоких термических поражений конструкций прекрасно виден невооруженным глазом. Его надо фиксировать в протоколах осмотра места пожара и учитывать в поисках очага пожара. Необходимо установить природу прогара (может быть, это след конвективного теплового потока, может быть, — очаг пожара).
Особый интерес представляют прогары в полу, прежде всего, когда они немногочисленны или прогар один. Полы на пожаре, как правило, сохраняются, поэтому наличие прогара в полу требует его фиксации в протоколе осмотра, а также подробного исследования.
Локальные прогары с четко очерченными границами образуются при длительном низкотемпературном пиролизе (тлении).
От полностью выгоревшей деревянной конструкции над очагом пожара остается зола (минеральные соли, содержавшиеся в древесине) и металлические детали (гвозди, болты, скобы и т.д.), если таковые присутствовали до пожара. За пределами участка, выгоревшего над очагом, конструкции рушатся, еще полностью не сгорая, вместе с несгораемыми деталями. Таким образом, скопление, например, гвоздей в каком-либо одном месте может иногда служить дополнительным признаком очага пожара.
Невидимые невооруженным глазом особенности структуры и состава углей, которые зависят от условий их образования на пожаре, устанавливаются специальными методами (см. разд. 12.3). Инструментальные исследования древесных углей позволяют определять средне временную интегральную температуру и длительность пиролиза древесины в точке отбора пробы угля.
Источник
Визуальные признаки термических поражений на конструкциях из металлов и сплавов.
Деформации стальных конструкций наблюдаются почти на любом пожаре.
Известно, что нагрев стали
выше 300-350оС приводит к заметному повышению ее пластичности и сопровождается снижением прочности, у стали могут появиться заметные деформации,
при 500-600оС прочность углеродистой стали снижается вдвое, деформации нагруженных элементов стальных конструкций значительны по величине и 15-20 минутный нагрев может привести к их обрушению.
Температура 450-500 оС считается температурой потери несущей способности стальных изделий.
при 1000оС прочность стали снижается в 10 раз ,
Температура потери несущей способности конструкций из алюминиевых сплавов составляет 250 оС.
Что значит потеря несущей способности у металлоконструкции? В чем она проявляется? Конечно, конструкция не ломается; в первую очередь она гнется, деформируется. Эти деформации при осмотре места пожара можно увидеть и нужно оценить.
Оценка величины и направленности деформаций дает важную информацию об относительной интенсивности и направленности теплового воздействия в тех или иных зонах.
Визуальные признаки деформации, которые следует фиксировать и оценивать:
1. Направление деформации металлических элементов. Металлоконструкции и их отдельные элементы деформируются, как правило, в сторону наибольшего нагрева. Кстати, это свойство не только металлов, но и многих других негорючих материалов, например, стекла.
2. Величина деформации.
С чисто теоретической точки зрения, величина деформации конструкции должна быть пропорциональна температуре и длительности ее нагрева. Поэтому, казалось бы, очевидно, что на месте пожара наиболее «горячей» зоной можно считать ту, в которой металлоконструкция имеет наибольшую деформацию. Однако наибольшая деформация происходит не всегда там, где имела место наибольшая температура или наиболее интенсивный нагрев. Она может быть и там, где конструктивный элемент имеет наибольшую степень свободы или более высокую нагрузку. Если, например, стальная балка перекрытия имеет наибольшую деформацию посередине пролета, то это еще не значит, что именно в этой точке был наиболее интенсивный нагрев — просто здесь на балку действует наибольший изгибающий момент. И тем не менее, на рассредоточенных по зоне горения однотипных и относительно одинаково нагруженных конструкциях оценить степень деформации в сравнении друг с другом очень полезно. Это (при относительно равномерной пожарной нагрузке в помещении) можно рассматривать как явный признак направленности распространения горения.
Чтобы количественно оценить степень деформации, рассчитывают так называемую величину относительной деформации. Это отношение величины прогиба к величине участка конструкции, на которой этот прогиб наблюдается (b/l) (рисунок).
Величина b/l для однотипных конструкций наносится на план места пожара. Такая информация в первом приближении характеризует распределение зон термических поражений на месте пожара и может быть использована в поисках его очага. Эти данные относятся к группе последовательно нарастающих (убывающих) термических поражений.
Требуют серьезного внимания локальные деформации металлоконструкций на отдельных участках, т.е. произвольно расположенные термические поражения. Четко выраженные и значительные по величине локальные деформации возникают, как правило, на начальной стадии пожара, когда горения во всем объеме помещения еще нет и конструкции нагреваются от очага пожара в ограниченной локальной зоне. Если указанное локальное термическое поражение не находит объяснения – оно должно восприниматься как очаговый признак.
Б. Образование окислов на поверхности металла.
Алюминий и его сплавы.
Известно, что на поверхности алюминия и его сплавов уже при комнатных температурах существует микронной толщины окисный слой, который предохраняет алюминий от окисления. Окисел этот выполняет свою функцию и при нагреве алюминиевого изделия на пожаре, вплоть до достижения температуры плавления алюминия. Какой-либо полезной экспертной информации из исследования окисного слоя на алюминии извлечь не удается.
На поверхности медных изделий до температуры примерно 100 оС — присутствует черная пленка окисла (CuO, окись меди). При нагреве выше 100 оС и достаточной длительности — образуется пленка закиси меди — красного цвета (Cu2O). Это обстоятельство дает возможность в отдельных ситуациях оценивать, превышала ли температура в зоне, где находится медное изделие, указанную температуру.
Если поверхность обработанная, гладкая, то первый признак теплового воздействия, который можно обнаружить визуально — цвета побежалости. Они появляются при нагревании стали до температуры 200-300 оС благодаря образованию на ее поверхности пленки окисла микронной толщины. Толщина слоя окисла зависит от температуры, а за счет интерференции света с изменением толщины пленки меняется ее цвет. Таким образом, получается, что цвет пленки окисла («цвет побежалости») зависит от температуры нагрева стали и может использоваться для ее определения. Существует примерно следующая цветовая шкала цветов побежалости на сталях.
Цвет побежалости | Толщина слоя окисла Мкм | Температура нагрева оС |
Светло-желтый | 0,04 | 220-230 |
Соломенно-желтый | 0,045 | 230-240 |
Оранжевый | 0,05 | 240-260 |
Красно-фиолетовый | 0,065 | 260-280 |
Синий | 0,07 | 280-300 |
Следует отметить, что оценка нагрева металлических конструкций по цветам побежалости при поисках очага пожара используется редко. Чаще это делается при установлении причин пожаров, связанных с трением, локальным перегревом в технологических установках, двигателях и т.д.
Высокотемпературный окисел — окалина — образуется на сталях обыкновенного качества при температуре более 700оС.
Рост толщины окалины происходит по параболическому закону. Чем больше температура и длительность нагрева, тем она толще.
От температуры образования зависит и состав окалины. Она может состоять из трех слоев различных окислов (рисунок) (начиная от поверхности металла):
вустита (оксида двухвалентного железа, FeO), имеющего черный цвет
промежуточного слоя — магнетита (оксида двух-трехвалентного железа, Fe3O4 ,),.
гематита (оксида трехвалентного железа, Fe2O3), имеющего рыжий цвет.
Чередование окислов на поверхности металла связано с разным процентным содержанием кислорода в воздухе на пожаре по мере его развития.
Вначале при относительно высоком содержании кислорода происходит образование гематита. Затем по мере возрастания температуры и убывании кислорода в воздухе под слоем гематита образуется слой магнетита и ниже слой вустита. Таким образом, чем выше температура, тем больше в окалине вустита и меньше гематита
Это обстоятельство позволяет по цвету окалины и ее толщине ориентировочно оценивать температуру нагрева металлоконструкций. Низкотемпературная окалина (700 – 750 оС), в которой мало вустита, обычно имеет рыжеватый оттенок и достаточно тонкая. Окалина, образовавшаяся при 900-1000 оС и более — толстая и черная.
Обязательно надо помнить, что окалина – это очень плотный материал, прочно связанный с самим металлом: поэтому если окисел на поверхности стальной конструкции хоть и имеет рыжий цвет: но рыхлый и непрочный, то это, скорее всего, вообще не окалина, а обыкновенная ржавчина.
Цвет окалины и ее толщина дают возможность примерной оценки температуры нагрева стальных конструкций на пожаре. При этом, однако, не исключены ошибки, поэтому лучше все-таки проводить инструментальные исследования окалины и определять, таким образом, не только температуру, но и длительность нагрева конструкции.
Инструментальные методы исследования окалины будут рассмотрены ниже.
Расплавления и проплавления металла
Расплавления и проплавления (образование сквозных отверстий) металлов и сплавов на пожарах, особенно крупных, встречается не так уж редко. Можно считать, что это наиболее высокая степень термических поражений конструкций и отдельных предметов.
В 70-х годах В.Г.Выскребов (ВНИИСЭ) предложил даже использовать так называемый » метод температур плавлений» для поисков очага пожара. Метод заключался в фиксации мест, где расплавился тот или иной материал, и определении таким образом распределения температурных зон по месту пожара. Известно, например, что температура плавления составляет:
— у алюминия — 600 оС
— бронзы литой — 880-1040 оС
— стали — 1300-1400 оС
Таким образом, если в зоне А расплавился алюминиевый провод, то следует сделать вывод, что температура там превышала 600 оС, а в зоне Б, где оплавились медные провода, она была, как минимум, 1080-1090 оС.
Конечно, фиксировать на месте пожара зоны, где расплавился тот или иной материал, весьма полезно. Но считать это самостоятельным методом установления очага пожара было бы неразумно; да и температурные зоны устанавливаются таким путем достаточно условно. Если расплавился алюминий, то это не значит, что температура была 600 оС, она могла быть и 700- 900-1000 оС.
Кроме того, нужно иметь в виду, что «проплавления» в металле могут возникнуть и вовсе при температуре, ниже температуры плавления. Возможно это, как минимум, по двум причинам:
1. Локальный нагрев тонкого стального изделия (листа, проволоки и т.п.) приводит к образованию слоя окалины, соизмеримого по толщине с самим изделием. Окалина, не обладая достаточной механической прочностью затем может выкрошиться, и на изделии после пожара обнаружится «дырка».
В качестве примера приведем исследование пожара, произошедшего на складе одного из научно-исследовательских институтов. При осмотре места пожара там было обнаружено несколько стоящих вертикально рулонов сетки Рабица, на боку которых имелись вытянутые по вертикали каверны — проплавления сетки. Наличие таких проплавлений показалось дознавателю очень подозрительным — ведь температура плавления стали, как указывалось выше, 1300-1400 о С, и обеспечить такую температуру могло, разве что, применение каких-то таинственных спецсредств поджога. Все оказалось, однако, более прозаично. Когда остатки сетки по периметру прожогов исследовали, то оказалось, что проволочки полностью состоят из оксидов железа (не окисленного железа там уже нет), т.е. сталь полностью превратилась в окалину. Для такого процесса не нужна температура 1300-1400, достаточно и 800-900 о С. Но, тем не менее, почему разрушения имеют такой специфический, локальный характер? Оказалось, что над рулонами сетки, на деревянных антресолях склада хранилось несколько тонн полиэтиленовой пленки. При пожаре полимер плавился, горел, а часть его стекала на расположенные ниже рулоны сетки. Прилипающий к сетке и горящий полимер и привел в конечном счете к образованию столь странных » проплавлений».
Растворение металла в металле.
Расплавленный в ходе пожара более легкоплавкий металл при попадании на металл более тугоплавкий может привести как бы к «растворению» последнего в расплаве первого металла. Причем происходит это при температуре, ниже температуры плавления «тугоплавкого» металла.
Такой процесс возможен, например, при попадании расплавленного алюминия на медь и ее сплавы. Происходит это за счет образования эвтектического сплава меди с алюминием. Известно, что чистая медь имеет температуру плавления 1083 оС. В то же время эвтектические (совместно плавящиеся) сплавы «медь + расплавленный алюминий» – 660 оС, «медь + расплавленная латунь» — 870-980 оС
Точно также способностью растворяться в расплавленном алюминии обладает сталь.
Растворение стали в алюминии
Растворение происходит в три этапа:
а) окалинообразование на стали, протекающее под воздействием попавшего на нее расплавленного алюминия; (для этого достаточно температуры образования гематита — 700-750 оС)
б) химическое взаимодействие образовавшихся оксидов железа с расплавленным алюминием (термитная реакция):
Fe2O3 + 2Al —> Al2O3 + 2Fe + 847,8 кДж
Реакция эта, как видно из уравнения, сопровождается сильным тепловыделением, что приводит к дополнительному разогреву в зоне реакции и, соответственно, интенсификации последней.
в) растворение восстановленного из окисла железа за счет тепловыделения при термитной реакции (для этого тоже не обязательно достижения температуры плавления стали, например, при температуре 900 оС в алюминии может раствориться до 10 % железа).
Конечным результатом протекания указанных реакций может быть проплавление (дырка) в тонком стальном листе, в стенке стальной трубы и т.д.
Квалификационным признаком, позволяющим отличить такую дырку от проплавления, возникшего, например, под действием электрической дуги, является характерный контур проплавления (в форме лужицы, потека) и тоненькая каемка алюминия, обычно сохраняющаяся по периметру дырки.
Г. Горение металлов и сплавов
Известна способность к горению щелочных и щелочноземельных металлов (K, Na, Mg). Менее известно, однако, что в определенных условиях способны гореть (т.е. взаимодействовать с кислородом воздуха) и другие металлы и сплавы. Примером в данном случае могут быть широко распространенные в качестве конструкционных материалов алюмомагниевые сплавы.
Алюминий, нагретый до 660 оС, несмотря на существование оксидной пленки, все же начинает окисляться тем быстрее, чем ближе его температура к точке плавления, а горение алюминия в кислороде сопровождается значительно большим тепловыделением, чем горение других металлов (1675 кДж/моль).
Температуры самовоспламенения алюмомагниевых сплавов, в зависимости от содержания магния в сплаве могут находиться в пределах 450-560 оС. Наименьшие температуры установлены для сплавов с содержанием магния 45-49%. Они получены методом ДТА для мелкодисперсных порошков (диаметр частиц менее 50 мкм). Известно, что металлы лучше горят в мелкоизмельченном виде, тем не менее, на развившемся пожаре, при хорошей пожарной нагрузке способны гореть и сплавы в виде элементов конструкций. Пожарные, в частности, наблюдают это при пожарах в ангарах из легких металлоконструкций со сгораемым утеплителем.
Повышенное содержание кислорода резко увеличивает возможность загорания и интенсивность горения металлов. Такие ситуации могут сложиться на подводных лодках в медицинских барокамерах, на производствах, связанных с применением газообразного и жидкого кислорода. Наиболее распространенные марки сталей при толщине образца 3 мм и температуре 20 оС способны гореть в кислороде при его давлении 0,02 Мпа, а алюминиевые сплавы (при тех же параметрах) — при давлении 0,1 Мпа. Другие металлы менее склонны к горению в кислороде.
Визуальными признаками горения металлов является разрушение конструкций в зоне горения. От выгоревшей детали часто остается ажурный скелет. Горение часто сопровождается разбрызгиванием металла, в результате чего на месте пожара обнаруживаются множественные мелкие частички металла и его окислов, аналогичные тем, которые образуются при дуговых процессах.
Источник