Меню

Схема тигельной печи для плавки металла



Схемы индукционных печей

Схема индукционной канальной печи

Почти все конструкции промышленных индукционных канальных печей выполняются с отъемными индукционными единицами. Индукционная единица представляет собой электропечной трансформатор с футерованным каналом для размещения расплавленного металла. Индукционная единица состоит из следующих элементов, кожуха, магнитопровода, футеровки, индуктора.

Индукционные единицы выполняются как однофазными, так и двухфазными (сдвоенными) с одним или двумя каналами на один индуктор. Индукционная единица подключается ко вторичной стороне (стороне НН) электропечного трансформатора с помощью контакторов, имеющих дугогасящие устройства. Иногда включаются два контактора с параллельно работающими силовыми контактами в главной цепи.

На рис. 1 приведена схема питания однофазной индукционной единицы канальной печи. Реле максимального тока РМ1 и РМ2 служат для контроля и отключения печи при перегрузках и коротких замыканиях.

Трехфазные трансформаторы используются для питания трехфазных или двухфазных печей, имеющих либо общий трехфазный магнитопровод, либо два или три отдельных магнитопровода стержневого типа.

Для питания печи в период рафинирования металла и для поддержания режима холостого хода служат автотрансформаторы для более точного регулирования мощности в период доводки металла до нужного химического состава (при спокойном, без бурления, режиме расплавления), а также для начальных пусков печи при первых плавках, которые проводятся при малом объеме металла в ванне для обеспечения постепенной сушки и спекания футеровки. Мощность автотрансформатора выбирают в пределах 25—30% мощности основного трансформатора.

Для контроля температуры воды и воздуха, охлаждающих индуктор и кожух индукционной единицы, устанавливают электроконтактные термометры, выдающие сигнал при превышении температуры свыше допустимой. Питание печи автоматически отключается при повороте печи для слива металла. Для контроля положения печи служат конечные выключатели, сблокированные с приводом электропечи. У печей и миксеров непрерывного действия при сливе металла и загрузке новых порций шихты отключение индукционных единиц не производится.

Рис. 1. Принципиальная схема питания индукционной единицы канальной печи: ВМ — выключатель мощности, КЛ — контактор, Тр — трансформатор, С — конденсаторная батарея, И — индуктор, ТН1, ТН2 — трансформаторы напряжения, 777, ТТ2 — трансформаторы тока, Р — разъединитель, ПР — предохранители, РМ1, РМ2 — реле максимального тока.

Для обеспечения надежного питания при эксплуатации и в аварийных случаях приводные двигатели механизмов наклона индукционной печи, вентилятора, привод загрузочно-разгрузочных устройств и системы управления питаются от отдельного трансформатора собственных нужд.

Схема индукционной тигельной печи

Промышленные индукционные тигельные печи емкостью более 2 т и мощностью свыше 1000 кВт питаются от трехфазных понижающих трансформаторов с регулированием вторичного напряжения под нагрузкой, подключаемых к высоковольтной сети промышленной частоты.

Печи выполняют однофазными, и для обеспечений равномерной нагрузки фаз сети в цепь вторичного напряжения подключают симметрирующее устройство, состоящее из реактора L с регулированием индуктивности методом изменения воздушного зазора в магнитной цепи и конденсаторной батареи Сс, подключаемых с индуктором по схеме треугольника (см. АРИС на рис. 2). Силовые трансформаторы мощностью 1000, 2500 и 6300 кВ-А имеют 9 — 23 ступени вторичного напряжения с автоматическим регулированием мощности на желаемом уровне.

Печи меньших емкости и мощности питаются от однофазных трансформаторов мощностью 400 — 2500 кВ-А, при потребляемой мощности свыше 1000 кВт также устанавливают симметрирующие устройства, но на стороне ВН силового трансформатора. При меньшей мощности печи и питании от высоковольтной сети 6 или 10 кВ можно отказаться от симметрирующего устройства, если колебания напряжения при включении и выключении печи будут находиться в допустимых пределах.

На рис. 2 приведена схема питания индукционной печи промышленной частоты. Печи снабжаются регуляторами электрического режима АРИР, которые в заданных пределах обеспечивают поддержание напряжения, мощности Рп и cosфи путем изменения числа ступеней напряжения силового трансформатора и подключения дополнительных секций конденсаторной батареи. Регуляторы и измерительная аппаратура размещены в шкафах управления.

Читайте также:  Кислоты взаимодействуют с металлами основными оксидами основаниями с солями

Рис. 2. Схема питания индукционной тигельной печи от силового трансформатора с симметрирующим устройством и регуляторами режима печи: ПСН — переключатель ступеней напряжения, С — симметрирующая емкость, L — реактор симметрирующего устройства, С-Ст — компенсирующая конденсаторная батарея, И — индуктор печи, АРИС — регулятор симметрирующего устройства, АРИР — регулятор режима, 1K—NK — контакторы управления емкостью батареи, ТТ1, ТТ2 — трансформаторы тока.

На рис. 3 приведена принципиальная схема питания индукционных тигельных печей от машинного преобразователя средней частоты. Печи оснащены автоматическими регуляторами электрического режима, системой сигнализации «проедания» тигля (для высокотемпературных печей), а также сигнализацией о нарушении охлаждения в водоохлаждаемых элементах установки.

Рис. 3. Схема питания индукционной тигельной печи от машинного преобразователя средней частоты со структурной схемой автоматического регулирования режима плавки: М — приводной двигатель, Г —генератор средней частоты, 1K—NK — магнитные пускатели, ТИ — трансформатор напряжения, ТТ — трансформатор тока, ИП — индукционная печь, С — конденсаторы, ДФ — датчик фазы, ПУ — переключающее устройство, УФР — усилитель-фазорегулятор, 1КЛ, 2КЛ — линейные контакторы, БС — блок сравнения, БЗ — блок защиты, ОВ — обмотка возбуждения, РН — регулятор напряжения.

Схема индукционной закалочной установки

На рис. 4 приведена принципиальная электрическая схема питания индукционного закалочного станка от машинного преобразователя частоты. Помимо источника питания М—Г схема включает в себя силовой контактор К, закалочный трансформатор ТрЗ, на вторичную обмотку которого включен индуктор И, компенсирующую конденсаторную батарею Ск, трансформаторы напряжения и тока ТН и 1TT, 2ТТ, измерительные приборы (вольтметр V, ваттметр W, фазометр) и амперметры тока генератора и тока возбуждения, а также реле максимального тока 1РМ, 2РМ для защиты источника питания от коротких замыканий и перегрузок.

Рис. 4. Принципиальная электрическая схема индукционной закалочной установки: М —приводной двигатель, Г — генератор, ТН, ТТ — трансформаторы напряжения и тока, К — контактор, 1PM, 2РМ, ЗРМ — реле тока, Рк — разрядник, А, V, W — измерительные приборы, ТрЗ — закалочный трансформатор, OВГ —обмотка возбуждения генератора, РР — разрядный резистор, РВ — контакты реле возбуждения, PC — регулируемое сопротивление.

Для питания старых индукционных установок для термообработки деталей используют электромашинные преобразователи частоты — приводной двигатель синхронного или асинхронного типа и генератор средней частоты индукторного типа, в новых индукционных установках — статические преобразователи частоты.

Схема промышленного тиристорного преобразователя частоты для питания индукционной закалочной установки показана на рис. 5. Схема тиристорного преобразователя частоты состоит из выпрямителя, блока дросселей, преобразователя (инвертора), цепей контроля и вспомогательных узлов (реакторов, теплообменников и пр.). По способу возбуждения инверторы выполняются с независимым возбуждением (от задающего генератора) и с самовозбуждением.

Тиристорные преобразователи могут устойчиво работать как с изменением частоты в широком диапазоне (при самонастраивающемся колебательном контуре в соответствии с изменяющимися параметрами нагрузки), так и при неизменной частоте с широким диапазоном изменения параметров нагрузки в связи с изменением активного сопротивления нагреваемого металла и его магнитных свойств (для ферромагнитных деталей).

Рис. 5. Принципиальная схема силовых цепей тиристорного преобразователя типа ТПЧ-800-1: L — сглаживающий реактор, БП — блок пуска, ВА — выключатель автоматический .

Преимуществами тиристорных преобразователей являются отсутствие вращающихся масс, малые нагрузки на фундамент и малое влияние коэффициента использования мощности на снижение КПД, КПД составляет 92 — 94% при полной нагрузке, а при 0,25 снижается только на 1 — 2%. Кроме того, поскольку частота может быть легко изменена в определенном диапазоне, нет необходимости регулирования емкости для компенсации реактивной мощности колебательного контура.

Читайте также:  Смазка для коронок по металлу

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Тигельная печь: варианты конструкции, изготовление своими руками

В домашней мастерской компактная тигельная печь помогает отливать из алюминия мелкие элементы механизмов, болванки, сувениры, аксессуары для интерьера. Агрегат устроен так, чтобы можно было плавить материал в сжатые сроки с минимальными усилиями. Устройства, применяемые в промышленных масштабах, напротив, имеют целью экономию топлива, они управляются в автоматизированном режиме.

Виды тигельных печей

В основу классификации обычно закладывается вид энергии, используемый для плавления металла. Так, газовые тигельные печи, как и электрические, нашли широкое применение в промышленном секторе, их активно используют для работы с алюминием и другими легкоплавкими материалами.

Модели, действующие на твердом топливе, распространены в относительно небольших мастерских, не имеющих узкой специализации (в частности, у домашних умельцев, так как это простейшая конфигурация). В отдельную категорию выносятся индукционные тигельные печи, использующие электромагнитное поле, их подключают к источнику переменного тока.

Индукционная тигельная печь

Причины востребованности индукционных установок:

  • высокая производительность,
  • легкость управления и обслуживания, широкие возможности для автоматизации процесса,
  • возможность слива массы без остатка, полного опорожнения тигля,
  • обеспечение быстрого плавления,
  • отсутствие промежуточных нагревательных элементов.

В зависимости от условий функционирования различают печи:

  • компрессорные (создают избыточное давление),
  • вакуумные,
  • открытые.

Индукционные тигельные печи могут быть:

  • периодическими,
  • непрерывными,
  • полунепрерывными.

Плавильный тигель бывает:

  • керамическим (оптимальный вариант, не вступает в контакт с обрабатываемыми материалами),
  • проводящим графитовым (долговечный, подходит для работы с драгоценным ломом),
  • металлическим.

Последний подразделяется на водоохлаждаемые и проводящие модификации.

Устройство тигельной печи

Индукционная плавильная печь состоит из каркаса, индуктора, камеры нагрева, механизма наклона, вакуумной системы. Агрегат не имеет сердечника, в нем цилиндрический плавильный тигель размещается непосредственно в полости индуктора. Смесь исходных материалов плавится в тигле под воздействием электромагнитной энергии. Все компоненты заключаются в кожух – этот каркас обеспечивает жесткость конструкции, предотвращает рассеивание мощности.

Внешний вид индукционной плавильной печи

Более простыми являются схемы тигельных печей, функционирующих на базе твердого топлива, к примеру, на древесном угле – их легче выполнить своими руками из подручных материалов. Корпус из металлического цилиндра укрепляется огнеупорным слоем из бетона или шамотной глины с песком. В эту шахту впоследствии помещают топливо. Сверху устанавливают тигель, например, чайник, консервную банку с толстыми стенками, любую крепкую емкость из нержавейки.

В нижнем секторе шахты присутствует отверстие, предназначенное для подачи воздуха, здесь же расположено решетчатое основание. Эти элементы позволяют поддерживать процесс горения, менять температуру. Лишний воздух выводится через заслонку. Для нагнетания обычно используют трубу пылесоса или фен.

Тигельные печи, предназначенные для единовременного плавления более 10 кг алюминия, оснащают крышкой, чтобы металл равномерно прогревался. Все элементы примитивных моделей выполняют из чугуна или стали – эти материалы не деформируются при нагревании в кустарных условиях.

Отличия самодельного и заводского агрегата

Чтобы понять разницу, нужно взять за точку отсчета цель использования оборудования. Агрегаты домашней сборки обычно нужны для периодического применения (перерывы могут быть существенными), поэтому на первый план в них выходит минимальная себестоимость, возможность выполнения простейших манипуляций, нетребовательность в обслуживании.

Читайте также:  Металл нагревается от магнита

В том случае, если результаты плавки используются для получения заработка, целесообразнее приобрести заводскую индукционную модель – такое оборудование способствует аккуратной работе, помогает точно соблюдать замеры, сводит к нулю вероятность попадания нежелательных примесей.Такое же оборудование сложно выполнить своими руками – сборка индуктора, выбор тигля, обустройство экрана требует профильных навыков. Создать конденсаторную батарею и генератор сможет не каждый.

Тигельная печь своими руками

Нельзя упускать из внимания эргономические показатели печей. В кустарных заготовках им уделяется минимум ресурсов, как правило, такие вариации неудобны в использовании, зачастую опасны ввиду применения подручных материалов. В заводских линейках для обеспечения комфортной работы применяются проверенные технологии, в частности, это касается конфигурации и поворотного механизма тигля. Важно, что в них созданы условия для предотвращения травматизма.

Тигельная печь своими руками: пошаговая инструкция

Если предстоит периодически плавить до 3 кг лома, будет достаточно производительности агрегата, сложенного из печного кирпича.

Материалы и технология

  • 20-25 красных кирпичей,
  • решетку-гриль,
  • изоленту,
  • фен и отрезок трубы, подходящий под диаметр его сопла,
  • консервную банку с высокими толстыми стенками,
  • стальную проволоку,
  • уголь (понадобится для розжига).

Кирпичи закладываются в основу корпуса, они служат огнеупорной защитой агрегата. Тигель в этом случае – консервная банка, с противоположных сторон верхней ее части выполняют 2 отверстия и пропускают через них стальную проволоку. Эта импровизированная ручка поможет вытащить из печи емкость со сплавом.

Для подачи воздуха домашние мастера используют фен, включенный в «холодном» режиме, к нему приматывают с помощью изоленты отрезок трубы, конструкция превращается в импровизированный воздуховод.

Схема такой тигельной печи для плавки алюминия предельно проста, ее можно выполнить и без специфических навыков. При изготовлении нельзя использовать расходные материалы, имеющие цинковое покрытие: в процессе использования могут выделяться токсичные пары.

Сборка кирпичного колодца

Первый ряд выкладывается в виде прямоугольного контура, внутреннее отверстие должно иметь такие параметры, чтобы в него поместился целый кирпич. Следующий ряд выполняется аналогично, но на одной стороне два кирпича должны образовать коридор, в который будет поступать кислород, с габаритами, соответствующими описанному выше воздуховоду.

Кирпичи в основе корпуса служат огнеупорной защитой печи

Сверху устанавливается решетка-гриль, если ее нет, можно воспользоваться металлической пластиной или крышкой с отверстиями.Решетку фиксирует третий ряд кирпичей, здесь уже не нужно оставлять проем для воздуховода.

Заготовку из фена и трубы подводят к соответствующему кирпичному ряду, включают воздуховод только после того, как насыпанный на решетку уголь будет растоплен. Интенсивность горения можно менять, переключая рычажок режимов фена. Тигель подвешивают на крайнюю кладку за проволоку, при необходимости ее можно дополнительно зафиксировать с помощью 2 кирпичей. Когда банка разогреется и слегка покраснеет, в нее можно загрузить алюминиевый лом.

Опытные мастера рекомендуют плавить металл именно в подогретом тигле, потому что сочетание холодной банки и холодного лома может привести к прогоранию емкости, в этом случае ставший жидким алюминий вытечет в огонь.

Подобная печь проста в устройстве, работа с ней не вызовет затруднений. После того, как металл расплавится, тигель аккуратно вынимают, держа за проволоку. Чтобы избежать при этом ожогов, рекомендуется использовать огнеупорные перчатки. Нужно заблаговременно убедиться в том, что все используемые компоненты не имеют в составе токсичных веществ. В процессе эксплуатации также нужно следить, чтобы в емкость не попадали брызги воды.

Источник