Щелочноземельные металлы реагируют с солями или нет

Характерные химические свойства Be, Mg и щелочноземельных металлов

Общая характеристика элементов II а группы

Физические свойства простых веществ

Щелочноземельные металлы (по сравнению со щелочными металлами) обладают более высокими t°пл. и t°кип., потенциалами ионизации, плотностями и твердостью.

Химические свойства щелочноземельных металлов + Be

1. Реакция с водой.

В обычных условиях поверхность Be и Mg покрыты инертной оксидной пленкой, поэтому они устойчивы по отношению к воде. В отличие от них Ca, Sr и Ba растворяются в воде с образованием щелочей:

2. Реакция с кислородом.

Все металлы образуют оксиды RO, барий-пероксид – BaO2:

3. С другими неметаллами образуют бинарные соединения:

Ba + S → BaS (сульфиды)

Ca + 2C → CaC2 (карбиды)

Бериллий и магний сравнительно медленно реагируют с неметаллами.

4. Все щелочноземельные металлы растворяются в кислотах:

5. Бериллий растворяется в водных растворах щелочей:

6. Летучие соединения щёлочноземельных металлов придают пламени характерный цвет:

соединения кальция — кирпично-красный, стронция — карминово-красный, а бария — желтовато-зелёный.

Бериллий, также как и литий, относится к числу s-элементов. Четвертый электрон, появляющийся в атоме Be, помещается на 2s-орбитали. Энергия ионизации бериллия выше, чем у лития, из-за большего заряда ядра. В сильных основаниях он образует ион-бериллат ВеО 2- 2. Следовательно, бериллий ‑ металл, но его соединения обладают амфотерностью. Бериллий, хотя и металл, но значительно менее электроположительный, по сравнению с литием.

Высокой энергией ионизации атома бериллий заметно отличается от остальных элементов ПА-подгруппы (магния и щелочноземельных металлов). Его химия во многом сходна с химией алюминия (диагональное сходство). Таким образом, это элемент с наличием у его соединений амфотерных качеств, среди которых преобладают все же основные.

Электронная конфигурация Mg: 1s 2 2s 2 2p 6 3s 2 по сравнению с натрием имеет одну существенную особенность: двенадцатый электрон помещается на 2s-орбитали, где уже имеется 1е — .

Ионы магния и кальция ‑ незаменимые элементы жизнедеятельности любой клетки. Их соотношение в организме должно быть строго определённым. Ионы магния участвуют в деятельности ферментов (например, карбоксилазы), кальция – в построении скелета и обмена веществ. Повышение содержания кальция улучшает усвоение пищи. Кальций возбуждает и регулирует работу сердца. Его избыток резко усиливает деятельность сердца. Магний играет отчасти роль антагониста кальция. Введение ионов Mg 2+ под кожу вызывает наркоз без периода возбуждения, паралич мышц, нервов и сердца. Попадая в рану в форме металла, он вызывает долго незаживающие гнойные процессы. Оксид магния в лёгких вызывает так называемую литейную лихорадку. Частый контакт поверхности кожи с его соединениями приводит к дерматитам. Самые широко используемые в медицине соли кальция: сульфат СаSO4 и хлорид CaCL2. Первый используется для гипсовых повязок, а второй применяется для внутривенных вливаний и как внутреннее средство. Он помогает бороться с отёками, воспалениями, аллергией, снимает спазмы сердечно-сосудистой системы, улучшает свертываемость крови.

Все соединения бария, кроме BaSO4, ядовиты. Вызывают менегоэнцефалит с поражением мозжечка, поражение гладких сердечных мышц, паралич, а в больших дозах – дегенеративные изменения печени. В малых же дозах соединения бария стимулируют деятельность костного мозга.

При введении в желудок соединений стронция наступает его расстройство, паралич, рвота; поражения по признакам сходны с поражениями от солей бария, но соли стронция менее токсичны. Особую тревогу вызывает появление в организме радиоактивного изотопа стронция 90 Sr. Он исключительно медленно выводится из организма, а его большой период полураспада и, следовательно, длительность действия могут служить причиной лучевой болезни.

Читайте также:  Биржа металлов платина палладий

Радий опасен для организма своим излучением и огромным периодом полураспада (Т1/2 = 1617 лет). Первоначально после открытия и получения солей радия в более или менее чистом виде его стали использовать довольно широко для рентгеноскопии, лечения опухолей и некоторых тяжёлых заболеваний. Теперь с появлением других более доступных и дешевых материалов применение радия в медицине практически прекратилось. В некоторых случаях его используют для получения радона и как добавку в минеральные удобрения.

В атоме кальция завершается заполнение 4s-орбитали. Вместе с калием он образует пару s-элементов четвертого периода. Гидроксид кальция ‑ довольно сильное основание. У кальция — наименее активного из всех щелочноземельных металлов — характер связи в соединениях ионный.

По своим характеристикам стронций занимает промежуточное положение между кальцием и барием.

Свойства бария наиболее близки к свойствам щелочных металлов.

Бериллий и магний широко используют в сплавах. Бериллиевые бронзы – упругие сплавы меди с 0,5-3% бериллия; в авиационных сплавах (плотность 1,8) содержится 85-90% магния («электрон»). Бериллий отличается от остальных металлов IIА группы – не реагирует с водородом и водой, зато растворяется в щелочах, поскольку образует амфотерный гидроксид:

Магний активно реагирует с азотом:

В таблице приведена растворимость гидроксидов элементов II группы.

Растворимость, моль/л (20 0 С) Растворимость, г/л
Be(OH)2

Ba(OH)2

8∙10 -6

2∙10 -1

3,4∙10 -4

Традиционная техническая проблема – жесткость воды, связанная с наличием в ней ионов Mg 2+ и Ca 2+ . Из гидрокарбонатов и сульфатов на стенках нагревательных котлов и труб с горячей водой оседают карбонаты магния и кальция и сульфат кальция. Особенно мешают они работе лабораторных дистилляторов.

S-элементы в живом организме выполняют важную биологическую функцию. В таблице приведено их содержание.

Содержание S-элементов в организме человека

Элемент Содержание, %
Li

Na

K

Rb

Cs

Be

Mg

Ca

Sr

Ba

10 -4

Во внеклеточной жидкости содержится в 5 раз больше ионов натрия, чем внутри клеток. Изотонический раствор («физиологическая жидкость») содержит 0,9% хлорида натрия, его применяют для инъекций, промывания ран и глаз и т. п. Гипертонические растворы (3-10% хлорида натрия) используют как примочки при лечении гнойных ран («вытягивание» гноя). 98% ионов калия в организме находится внутри клеток и только 2% во внеклеточной жидкости. В день человеку нужно 2,5-5 г калия. В 100 г кураги содержится до 2 г калия. В 100 г жареной картошки – до 0,5 г калия. Во внутриклеточных ферментативных реакциях АТФ и АДФ участвуют в виде магниевых комплексов.

Ежедневно человеку требуется 300-400 мг магния. Он попадает в организм с хлебом (90 мг магния на 100 г хлеба), крупой (в 100 г овсяной крупы до 115 мг магния), орехами (до 230 мг магния на 100 г орехов). Кроме построения костей и зубов на основе гидроксилапатита Ca10(PO4)6(OH)2 , катионы кальция активно участвуют в свертывании крови, передаче нервных импульсов, сокращении мышц. В сутки взрослому человеку нужно потреблять около 1 г кальция. В 100 г твердых сыров содержится 750 мг кальция; в 100 г молока – 120 мг кальция; в 100 г капусты – до 50 мг.

Источник

Щелочноземельные металлы

К щелочноземельным металлам относятся металлы IIa группы: бериллий, магний, кальций, стронций, барий и радий. Отличаются легкостью, мягкостью и сильной реакционной способностью.

Общая характеристика

От Be к Ra (сверху вниз в периодической таблице) происходит увеличение: атомного радиуса, металлических, основных, восстановительных свойств, реакционная способность. Уменьшается электроотрицательность, энергия ионизация, сродство к электрону.

Электронные конфигурации у данных элементов схожи, так как они находятся в одной группе (главной подгруппе!), общая формула ns 2 :

  • Be — 2s 2
  • Mg — 3s 2
  • Ca — 4s 2
  • Sr — 5s 2
  • Ba — 6s 2
  • Ra — 7s 2
Природные соединения

В природе щелочноземельные металлы встречаются в виде следующих соединений:

  • Be — BeO*Al2O3*6SiO2 — берилл
  • Mg — MgCO3 — магнезит, MgO*Al2O3 — шпинель, 2MgO*SiO2 — оливин
  • Ca — CaCO3 — мел, мрамор, известняк, кальцит, CaSO4*2H2O — гипс, CaF2 — флюорит

Получение

Это активные металлы, которые нельзя получить электролизом раствора. С целью их получения применяют электролиз расплавов, алюминотермию и вытеснением их из солей другими более активными металлами.

MgCl2 → (t) Mg + Cl2 (электролиз расплава)

CaO + Al → Al2O3 + Ca (алюминотермия — способ получения металлов путем восстановления их оксидов алюминием)

Химические свойства

Все щелочноземельные металлы (кроме бериллия и магния) реагируют с холодной водой с образованием соответствующих гидроксидов. Магний реагирует с водой только при нагревании.

Щелочноземельные металлы — активные металлы, стоящие в ряду активности левее водорода, и, следовательно, способные вытеснить водород из кислот:

Реакции с неметаллами

Хорошо реагируют с неметаллами: кислородом, образуя оксиды состава RO, с галогенами (F, Cl, Br, I). Степень окисления у щелочноземельных металлов постоянная +2.

Mg + O2 → MgO (оксид магния)

При нагревании реагируют с серой, азотом, водородом и углеродом.

Mg + S → (t) MgS (сульфид магния)

Ca + H2 → (t) CaH2 (гидрид кальция)

Ba + C → (t) BaC2 (карбид бария)

Ba + TiO2 → BaO + Ti (барий, как более активный металл, вытесняет титан)

Оксиды щелочноземельных металлов

Имеют общую формулу RO, например: MgO, CaO, BaO.

Получение

Оксиды щелочноземельных металлов можно получить путем разложения карбонатов и нитратов:

Рекомендую взять на вооружение общую схему разложения нитратов:

Химические свойства

Проявляют преимущественно основные свойства, все кроме BeO — амфотерного оксида.

    Реакции с кислотами и кислотными оксидами

Реакция с водой

В нее вступают все, кроме оксида бериллия.

Амфотерный оксид бериллия

Амфотерные свойства оксида бериллия требуют особого внимания. Этот оксид проявляет двойственные свойства: реагирует с кислотами с образованием солей, и с основаниями с образованием комплексных солей.

BeO + NaOH + H2O → Na2[Be(OH)4] (тетрагидроксобериллат натрия)

Если реакция проходит при высоких температурах (в расплаве) комплексная соль не образуется, так как происходит испарение воды:

BeO + NaOH → Na2BeO2 + H2O (бериллат натрия)

Гидроксиды щелочноземельных металлов

Проявляют основные свойства, за исключением гидроксида бериллия — амфотерного гидроксида.

Получение

Получают гидроксиды в реакции соответствующего оксида металла и воды (все кроме Be(OH)2)

Химические свойства

Основные свойства большинства гидроксидов располагают к реакциям с кислотами и кислотными оксидами.

Реакции с солями (и не только) идут в том случае, если соль растворимы и по итогам реакции выделяется газ, выпадает осадок или образуется слабый электролит (вода).

Гидроксид бериллия относится к амфотерным: проявляет двойственные свойства, реагируя и с кислотами, и с основаниями.

Жесткость воды

Жесткостью воды называют совокупность свойств воды, зависящую от присутствия в ней преимущественно солей кальция и магния: гидрокарбонатов, сульфатов и хлоридов.

Различают временную (карбонатную) и постоянную (некарбонатную) жесткость.

Вероятно, вы часто устраняете жесткость воды у себя дома, осмелюсь предположить — каждый день. Временная жесткость воды устраняется обычным кипячением воды в чайнике, и известь на его стенках — CaCO3 — бесспорное доказательство устранения жесткости:

Также временную жесткость можно устранить, добавив Na2CO3 в воду:

С постоянной жесткостью бороться кипячением бесполезно: сульфаты и хлориды не выпадут в осадок при кипячении. Постоянную жесткость воды устраняют добавлением в воду Na2CO3:

Жесткость воды можно определить с помощью различных тестов. Чрезмерно высокая жесткость воды приводит к быстрому образованию накипи на стенках котлов, труб, чайника.

© Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Блиц-опрос по теме Щелочноземельные металлы

Источник

II группа главная подгруппа Периодической таблицы Менделеева (щелочноземельные металлы)

К щелочноземельным металлам относят химические элементы: двувалентные металлы, составляющие IIА группу:

Бериллий Be

магний Mg

кальций Ca,

стронций Sr,

барий Ba и

радий Ra.

Хотя бериллий Be по свойствам больше похож на алюминий, а магний Mg проявляет некоторые свойства щелочноземельных металлов, но в целом отличается от них.

Все щелочноземельные металлы — вещества серого цвета и гораздо более твердые, чем щелочные металлы.

Бериллий Be устойчив на воздухе. Магний и кальций (Mg и Ca) устойчивы в сухом воздухе. Стронций Sr и барий Ba хранят под слоем керосина.

Общая характеристка щелочноземельных металлов

От Be к Ra (сверху вниз в периодической таблице) происходит увеличение:

  • атомного радиуса,
  • металлических, основных, восстановительных свойств,
  • реакционной способности.

Уменьшается

  • электроотрицательность,
  • энергия ионизация,
  • сродство к электрону.

Электронные конфигурации у данных элементов схожи, все они содержат 2 электрона на внешнем уровне ns 2 :

Be — 2s 2

Mg —3s 2

Ca — 4s 2

Sr — 5s 2

Ba — 6s 2

Ra — 7s 2

Нахождение в природе щелочноземельных металлов

Как правило, щелочноземельные металлы в природе присутствуют в виде минеральных солей: хлоридов, бромидов, йодидов, карбонатов, нитратов и др.

Основные минералы, в которых присутствуют щелочноземельные металлы:

Способы получения щелочноземельных металлов

Магний

  • Магний получают электролизом солей, чаще всего хлоридов: расплавленного карналлита (KCl·MgCl26H2O) или хлорида магния с добавками хлорида натрия при 720–750°С:
  • восстановлением прокаленного доломита в электропечах при 1200–1300°С:

2(CaO · MgO) + Si → 2Mg + Ca2SiO4

Кальций

Кальций получают электролизом расплавленного хлорида кальция с добавками фторида кальция:

Барий

Барий получают алюмотермическим способом — восстановление оксида бария алюминием в вакууме при 1200 °C:

Химические свойства щелочноземельных металлов

Качественные реакции

  • Окрашивание пламени солями щелочных металлов

Цвет пламени:

Sr — карминово-красный (алый)

  • Взаимодействие с веществами:

Взаимодействие с простыми веществами — неметаллами

С кислородом

С кислородом взаимодействуют при нагревании с образованием оксидов

С галогенами

Щелочноземельные металлы реагируют с галогенами при нагревании с образованием галогенидов .

С водородом

Щелочноземельные металлы реагируют с водородом при нагревании с образованием гидридов:

Бериллий с водородом не взаимодействует.

Магний реагирует только при повышенном давлении:

С серой

Щелочноземельные металлы при нагревании взаимодействуют с серой с образованием сульфидов сульфидов:

Ca + 2C → CaC2 (карбиды)

С азотом

При комнатной температуре с азотом взаимодействует только магний с образованием нитрида:

Остальные щелочноземельные металлы реагируют с азотом при нагревании.

С углеродом

Щелочноземельные металлы реагируют с углеродом с образованием карбидов, преимущественно ацетиленидов:

Бериллий при нагревании с углеродом с образует карбид — метанид:

С фосфором

Щелочноземельные металлы при нагревании взаимодействуют с фосфором с образованием фосфидов:

Взаимодействие со сложными веществами

С водой

Кальций, стронций и барий взаимодействуют с водой при комнатной температуре с образованием щелочи и водорода:

Магний реагирует с водой при кипячении, а бериллий с водой не реагирует.

С кислотами

  • С растворами HCl, H2SO4,H3PO4щелочноземельные металлы взаимодействуют с образованием соли и выделением водорода:
    Са + H2SO4(разб)= СаSO4 + H2
  • С кислотами-окислителями (HNO3 и конц. H2SO4):

с концентрированной серной:

с разбавленной и концентрированной азотной:

С водными растворами щелочей

В водных растворах щелочей растворяется только бериллий:

С солями

В расплаве щелочноземельные металлы могут взаимодействовать с некоторыми солями:

Запомните! В растворе щелочноземельные металлы взаимодействуют с водой, а не с солями других металлов.

С оксидами

Щелочноземельные металлы могут восстанавливать из оксидов такие неметаллы как кремний, бор, углерод:

2Ca + SiO2 → 2CaO + Si

Магний сгорает в атмосфере углекислого газа с образованием оксида магния и сажи (С):

Источник

Поделиться с друзьями
Металл
Adblock
detector