Меню

Регулировка оборотов токарного станка по металлу



Токарное дело

Эта статья посвящена правилам и технике управления токарным станком . От соблюдения правил работы на токарном станке зависит ваша безопасность. Уверенная техника управления токарным станком влияет на качество изделия и производительность управляемых работ. Если ваша цель узнать больше о токарном деле , следуйте руководству.

Шаг 1. Проверка токарного станка перед пуском

Прежде, чем запустить токарный станок, должен быть произведен допусковой контроль, а именно :

  1. При сменной работе на производстве сменщик, передающий вам токарный станок, обязан доложить о замеченных в нем неполадках (устно, письменно, по телефону). Отсутствие замечаний подразумевает, что токарный станок находится в исправном состоянии.

На производстве устранением неисправностей токарного станка занимается ремонтная служба. Станочник должен только информировать их об возникновении неисправности.

Перед включением токарного станка в электропитание убедитесь :

    Что на станке нет какого-либо предупреждения, типа (токарный станок в ремонте не включать) ;


Рукоятки управления шпинделем, подачами, маточной гайкой должны находятся в нейтральном положении.


Подача охлаждения выключена, сопла подачи жидкости направлены вниз.

  • Частоты оборотов и шаги подач установлены такие, какими вы их хотите увидеть, после запуска шпинделя.
  • Установленная вами деталь, которую следует обработать должна быть надежна закреплена.

  • Пол возле токарного станка должен быть чистым, а под ногами не должно быть лишних предметов.
  • Одежда токаря должна быть аккуратно (без свисающих лоскутов).
  • Не забыть ключ в патроне (всегда следить за выемкой ключа из патрона).
  • Выполнив допусковой контроль : включаем главный рубильник токарного станка, дополнительные включатели, если такие имеются. Далее проводится смазка токарного станка.

    Шаг 2. Управление шпинделем.

    Перед запуском шпинделя или главного двигателя, обязательно убеждаемся, что у вращающихся элементов на нем, в частности патрона, не будет препятствий вращению со стороны неподвижных частей станка. Особую опасность при запуске шпинделя на высоких оборотах представляют собой выступающие за его пределы тонкие прутковые заготовки.

    Также это касается деталей больших диаметров со значительным вылетом из патрона и не поджатым с другого конца центром задней бабки.

    Как уже говорилось в первом уроке «Устройство токарного станка», настройки частот оборотов шпинделя производят установкой переключателей и рычагов на его узлах в определенное положение согласно таблице, расположенной на станке.

    Правила переключение можно обобщить так – «Нельзя переключать или доводить до конца переключения, если таковые вызывают характерный звук не входящих в зацепление зубьев шестерен. В таком случае нужные переключения следует делать при полной остановке.

    На всех токарных станках прямые обороты включаются подачей рукоятки включения на себя, а обратные от себя. У рукоятки с вертикальным ходом (на себя это вверх), а у рукоятки с горизонтальным перемещением (на себя это соответственно вправо).

    Прямые обороты на всех токарных станках соответствуют вращению шпинделя по часовой стрелке, если смотреть с задней стороны шпинделя. Торможение шпинделя на высоких оборотах за счет реверсирования фрикционов или обратной тяги главного двигателяэто недопустимо, так как ведет к перегрузке и перегреву механизма. Торможение должно выполняться тормозом. А если эффективности тормоза недостаточно, то ее следует восстановить регулировкой или ремонтом.

    Для крепления в трехкулачковом патроне деталей обычно используется одно гнездо «0» для введения в него ключа, что требует установки этого гнезда в верхнее положение зажима и отжима. В станках с механическим фрикционом это действие (при некоторых навыках) можно выполнять рукояткой управления фрикционов.

    При обработке резцом нельзя останавливать шпиндель при включенной подаче и не отведенном от детали резце (это приводит к поломке резца).

    Шаг 3. Управление подачей токарного станка

    Ручное управление подачей станка подразумевает подачу инструмента на небольшие длины (при обработках, настройках, подводках).

    Ручное управление подачей позволяет быстро вести, прерывать и возобновлять подачу, а также мгновенно изменять ее скорость (в зависимости от изменения условий и ситуаций обработки). Ручная подача в продольном направлении приводится маховиком с горизонтальной ручкой или без нее. Вращение маховика против часовой стрелки приводит движение суппорта влево, а по часовой стрелке вправо.

    Продольное перемещение суппорта на токарном станке осуществляется за счет шестеренно реечной передачи. У таких передач есть люфты или зазоры в контактах деталей и ее механизмах.

    Ручное управление поперечной подачей (выполняется Т-образной рукояткой с горизонтальной ручкой). Вращение рукоятки по часовой стрелке подает салазки инструмент вперед, то есть от себя, вращение рукоятки против часовой стрелки подает инструмент к себе. На нашем станке есть ускоренное включение перемещения салазок. Существуют разные техники вращения маховика одной и двумя руками , которые применяются в зависимости от выполняемой работы на токарном станке.

    Подача верхними салазками

    На верхних салазках вращение рукоятки по часовой стрелке двигает салазки вперед, а вращение против часовой стрелки назад. Быстрое холостое перемещение таких рукояток можно делать за одну из ручек. При этом салазки должны быть отрегулированы на легкое перемещение. Более подробно о регулировке механизмов, салазок, токарного станка мы рассмотрим в следующем уроке по токарному делу.

    Шаг 4. Управление механическими подачами

    Механические подачи работают от привода через ходовой вал, а управление ими делается ручкой 4-х позиционного переключателя. Направление перемещение рукоятки переключателя соответствует направлению движения инструмента на суппорте.

    Перед включением механической подачи в любом направлении нужно визуально убедиться в отсутствии у всех точек суппорта препятствий со стороны других узлов станка особенно вращающихся. Частой оплошностью начинающих токарей является попытка приблизить суппорт к патрону при сдвинутых вправо салазок, что приводит к сталкиванию. Поэтому следует проверять беспрепятственное перемещение суппорта заранее.

    Нужно отработать техники ручной подачи так, чтобы не происходила остановка резца или остановка была минимальной.

    Читайте также:  Камеры вентиляционные приточные марка 2 пк металл производительность по воздуху 10000 м3 ч

    Шаг №5. Ускоренная подача токарного станка

    На станках имеющих ускоренную подачу необходимо соблюдать такие требования :

    • Для исключения случайного нажатия кнопки ускоренной подачи управление рычагом переключения подач необходимо производить приложением руки сбоку, но не сверху.
    • До пуска ускоренной подачи нужно надежно убедиться в отсутствии препятствий для продвижения у любых точек на суппорте, в том числе и у инструмента, в направлении, куда вы хотите подать.
    • Нельзя применять ускоренную подачудля коротких перемещений, особенно при подводам к вращающимся элементам.
    • Тяжелые суппорты средних станков имеют инерцию, которую усиливается при ускоренной подаче механизмом его привода.

    Бывают совмещенные подачи токарных станков (по виду привода, по направлениям). Такие токарные станки применяются для обработки неответственных конусов (неответственных фасок) и фасонных поверхностей.

    Резьбовые подачи

    Для нарезания резьб подача суппорта проводится за счетсмыкания маточной гайки с ходовым винтом. Включение и выключения маточной гайки делается отдельным рычагом. Шпиндель и ходовой винт вне зависимости от настроенного шага резьбы вращаются синхронно. Изменения направления вращения шпинделя приводит к изменению направления движения суппорта. Также изменение частоты вращения шпинделя приводит к изменению скорости перемещения суппорта. Попадание резца в ранее нарезанную канавку обеспечивается синхронизацией вращения шпинделя и ходового винта и соответственно хода суппорта.

    Можно нарезать, как правую, так и левую резьбу с помощью переключателя на передней бабке, который изменяет направление движения винта относительно шпинделя. При нарезании резьб, не рекомендуется увлекаться высокими оборотами шпинделя, так как его вращение напрямую связано с перемещением суппорта.

    Управление задней бабкой токарного станка

    Фиксация задней бабкой токарного станка выполняется рычагом, по мере рабочего хода которого, нарастает усилие прижима. При обработках с большими нагрузками, требующей лучшей фиксации задней бабкой воздействие на рычаг должно быть энергичным. Важно не спутать сопротивление рычага при зажиме с его жестким упором в конце рабочего хода. Когда задняя бабка используется с минимальными нагрузками, ее максимальная фиксация со станиной не нужна. Зажим задней бабки рационально соизмерять с предстоящей нагрузкой.

    Пиноль задней бабки приводится ручной подачей путем вращения маховика. Закрепление инструмента и приспособлений в конусе пиноли производится в следующем порядке :

    • Проверка конусов пиноли и инструмента на отсутствие загрязнений ;
    • Введение наружного конуса в конус пиноли и нахождение положения совпадения разъема замка в пиноли с лапкой на конусе инструмента (для инструментов, не имеющих лапки, не требуется).

    Управление резцедержателем

    Резцедержатель представляет из себя, достаточно точный механизм, обеспечивающий жесткость крепления резца в заданных позициях. Правильное положение рукоятки резцедержателя в зажатом виде должно соответствовать положению часовой стрелки на 3-4 часа. Это положение обеспечивается положением проставной шайбы под гайкой рукоятки резцедержателя. Зажим рычага производится средним локтевым усилием. А отжис рукоятки нельзя делать давлением своего веса во избежание потери веса. Отжим рукоятки делается одним или несколькими короткими толчками основанием ладони в направлении против часовой стрелки. Перед поворотом резцедержателя убедитесь в отсутствии препятствий для него самого и закрепленного в нем инструмента. Большую опасность представляют препятствия со стороны вращающихся элементов станка.

    Неисправности токарного станка

    В процессе работы любому токарю рано или поздно придется столкнутся с непредвиденными ситуациями при работе на токарном станке.

    Возможные ситуации при работе на токарном станке :

    • Самопроизвольная остановка токарного станка во время работы, во время отключения электропитания или механической неисправности ;
    • Сталкивания вращающихся элементов с элементами суппорта ;
    • Проворот детали в патроне ;
    • Вырыв детали из зажимных приспособлений токарного станка ;

    Неисправности токарного станка могут быть выражены в посторонних шумах, запахом горящей электропроводки и т.д.

    Отлучатся от токарного станка запрещено (нельзя оставлять токарный станок без внимания).

    Для экстренной остановки обработки детали следует быстро отвести резец от детали, отключить подачу, остановить шпиндель и выключить главный двигатель. При остановке шпинделе главное не включить обратные обороты, а включить именно нейтральное положение. О неисправностях токарного станка следует сразу же доложить руководству.

    Источник

    Наладка и настройка токарного станка

    Наладка и настройка токарного станка производится с целью подготовки оборудования к выполнению заданной работы. Наладка станка состоит в правильной установке и закреплении режущего инструмента в соответствующих приспособлениях на станке, в установке и закреплении заготовки непосредственно на станке или в приспособлении, в смазке станка перед его пуском, в подводе смазочно-охлаждающей жидкости и в выполнении некоторых других подготовительных операций.

    Настройка токарного станка состоит в его кинематической подготовке для выполнения обработки заготовки в соответствии с выбранным или заданным режимом резания. Для этого настраивают кинематические цепи станка, устанавливая в должные Положения органы управления скоростями главного движения и движения подачи. Нередко для этого предварительно подсчитывают необходимые передаточные отношения настраиваемых цепей, затем устанавливают эти отношения с помощью рукояток коробки скоростей и коробки подач, переключением числа оборотов регулируемого электродвигателя, установкой соответствующих зубчатых колес, сменных кулачков, копиров и т. д.

    В общем случае для настройки токарно винторезного станка требуется расчетное определение:

    • передаточного отношения органа настройки скоростной цепи — для получения заданного числа оборотов шпинделя;
    • передаточного отношения органа настройки цепи подач для осуществления заданной подачи или заданного шага нарезаемой резьбы.

    Настройка скоростной цепи современных токарных станков не требует каких-либо расчетов и состоит в переключении рукояток коробки скоростей (см. Токарный станок по металлу: назначение, компоновка, параметры, 1 и 5 на рис. 2) в положения, соответствующие требуемому числу оборотов шпинделя. Для сокращения затраты времени на переключения на станках имеются таблицы, указывающие, при каком положении рукояток получается каждое из чисел оборотов. При бесступенчатом регулировании скорость вращения шпинделя указывается стрелочным прибором.

    Читайте также:  Бизнес на станке лазерной резки металла

    Движение подачи при токарной обработке сообщается ходовым валиком каретке суппорта или его поперечным салазкам. Требуемая величина подачи на один оборот шпинделя устанавливается переключением рукояток без каких-либо расчетов. Величины возможных подач предварительно вычислены и оформлены в виде таблиц, облегчающих процесс переключений. Механизм подачи, например токарного станка 1К62, дает 42 различные продольные подачи в пределах 0,07 — 4,16 мм/об и столько же поперечных в пределах 0,035 — 2,08 мм/об шпинделя.

    При нарезании резьб используют оба органа настройки — коробку подач и гитару сменных колес, которая перестраивается только при изменении вида нарезаемых резьб (табл. 1).

    Источник

    Скорость резания при токарной обработке и ее влияние на шероховатость детали

    Режимы резания в механообработке — это совокупность рабочих параметров, определяющих, с какой скоростью, силой и на какую глубину происходит погружение резца в деталь в процессе удаления с ее поверхности слоя металла.

    Их базовые значения определяются расчетным путем на основании геометрии режущей кромки инструмента и обрабатываемого изделия, а также скорости их сближения. На реальные процессы обработки металла оказывает влияние множество факторов, связанных с особенностями применяемого инструмента, станочного оборудования и обрабатываемого материала.

    Поэтому для расчета технологических режимов резания применяются эмпирические формулы. А базовые значения входят в их состав вместе с такими справочными величинами, как группы поправочных коэффициентов, величина стойкости, параметры условий обработки и пр.

    Режимы резания влияют не только на заданную точность и класс обработки изделия. От них зависит сила, с которой кромка инструмента воздействует на металл, что напрямую влияет на потребляемую мощность, уровень выделения тепла и скорость износа инструмента.

    Поэтому расчет их параметров является одной из основных задач технологических служб предприятий. Несмотря на множество разновидностей металлорежущего оборудования и инструмента, в основе всей механообработки лежат единые закономерности.

    Поэтому методики вычисления режимов резания унифицированы и систематизированы в три основные группы: для токарных работ, для сверления и для фрезерования. Все остальные виды расчетов являются производными.

    Ключевые моменты изготовления

    Существует ряд хитростей, которых необходимо придерживаться во время работы на токарном станке:

    • фиксация заготовки в шпиндель;
    • точение с помощью резца необходимой формы и размера. Материалом для металлорежущих основ служит сталь или иные твердосплавные кромки;
    • снятие ненужных шаров происходит за счет разных оборотов вращения резцов суппорта и непосредственно самой заготовки. Иными словами, создается дисбаланс скоростей между режущими поверхностями. Второстепенную роль играет твердость поверхности;
    • применение одной из нескольких технологий: продольная, поперечная, совмещение обеих, применение одной из них.

    Виды токарных станков

    Под каждую конкретную деталь используется тот или иной агрегат:

    • винторезно-токарные: группа станков, пользующихся наибольшей востребованностью при изготовлении цилиндрических деталей из черных и цветных металлов;
    • карусельно-токарные: виды агрегатов, применяемых для вытачивания деталей. Особенно больших диаметров из металлических заготовок;
    • лоботокарный станок: позволяет вытачивать детали цилиндрической и конической форм при нестандартных габаритах заготовки;
    • револьверно-токарная группа: изготовление детали, заготовка которой представлена в виде калиброванного прудка;
    • ЧПУ – числовое программное управление: новый вид оборудования, позволяющий с максимальной точностью обрабатывать различные материалы. Достичь подобного специалисты могут с помощью компьютерной регулировки технических параметров. Точение происходит с точностью до микронных долей миллиметра, что невозможно увидеть или проверить невооруженным глазом.

    Подбор режимов резания

    Режимы работы

    Заготовка из каждого конкретного материала требует соответствия режима резки при токарной обработке. От правильности подборки зависит качество конечного изделия. Каждый профильный специалист в своей работе руководствуется следующими показателями:

    • Скорость, с которой вращается шпиндель. Главный акцент делается на вид материала: черновой или чистовой. Скорость первого несколько меньше, нежели второго. Чем выше обороты шпинделя, тем ниже подача резца. В противном случае плавление металла неизбежно. В технической терминологии это называется «возгорание» обработанной поверхности.
    • Подача – выбирается в пропорциональном соотношении со скоростью шпинделя.

    Резцы подбираются исходя из вида заготовки. Выточка с помощью токарной группы самый распространенный вариант, несмотря на наличие иных видов более совершенного оборудования.

    Это обосновывается невысокой стоимостью, высокой надежностью, длительным сроком эксплуатации.

    Обороты жесткого диска

    В современном мире многие пользуются усовершенствованными видами накопителей — SSD. Однако по многим причинам большинство пользователей не желают расставаться со старыми жесткими дисками, оставляя их в качестве хранилища переменных данных вроде игр, фильмов и так далее.

    На производительность механического накопителя напрямую влияет скорость вращения шпинделя, которая отвечает за передачу данных. Однако и данный параметр во многом зависит от нескольких переменных:

    • Интерфейс, через который осуществляется подключение к материнской плате. На данный момент существует интерфейс, способный передавать данные со скоростью до 600 мегабайт в секунду.
    • Буфер обмена данными необходим для передачи кратковременного содержания, поэтому его показатели должны быть максимальными.
    • Многие алгоритмы способны влиять на скорость обмена информацией, поэтому поддержка многих алгоритмов необходима.
    • Объем жесткого диска тоже немаловажен, так как от его размера зависит то, насколько быстро жесткий диск сможет определить и обнаружить нужный сектор, чтобы дать к нему доступ.
    • Обороты шпинделя. Этот показатель — один из основных, так как количество оборотов в минуту напрямую влияет на быстродействие системы в дальнейшей работе. Жесткие диски с разной скоростью вращения шпинделя работают в разных скоростных диапазонах.

    Как вычисляется скорость

    В инженерной среде расчет режимов резания исчисляют с помощью следующей формулы:

    V = π * D * n / 1000,

    V – скорость резки, исчисляемая в метрах за минуту;

    D – диаметру детали или заготовки. Показатели следует преобразовать в миллиметры;

    n – величина оборотов за минуту времени обрабатываемого материала;

    π – константе 3,141526 (табличное число).

    Иными словами, скорость резания это тот отрезок пути, который проходит заготовка за минуту времени.

    Читайте также:  Вес блока двигателя газ 53 на металлолом

    Например, при диаметре 30 мм скорость резки будет равна 94 метра за минуту.

    При возникновении необходимости вычислить величину оборотов, при условии определенной скорости, применяется следующая формула:

    Эти величины и их расшифровка уже известны по предыдущим операциям.

    Рекомендуемые подачи при обработке металлов по методу В. А. Колесова (по данным Уралмашзавода)

    Примечание. Меньшие значения подач приведены для более прочных материалов, большие — для менее прочных.

    Скорость резания

    Скорость резания зависит главным образом от обрабатываемого материала, материала и стойкости резца, глубины резания, подачи и охлаждения.
    На основании опыта токарей-скоростников передовых заводов и лабораторных исследований разработаны специальные таблицы, по которым можно выбрать необходимую скорость резания при обработке твердосплавными резцами.

    В качестве примера в табл. 6 приводятся рекомендуемые скорости резания для различных глубин резания и подач при продольном точении конструкционных углеродистых и легированных сталей с пределом прочности при растяжении сигмаb = 75 кг/мм² твердосплавными резцами Т15К6.

    Скорости резания, указанные в табл. 6, рассчитаны на определенные условия резания. Они предусматривают обработку точением сталей σb = 75 кг/мм² твердосплавными резцами Т15К6 с главным углом в плане φ = 45° при стойкости резца Т = 90 мин.

    При условиях, отличающихся от указанных в табл. 6, следует табличные данные по скорости резания помножить на соответствующие коэффициенты, приводимые ниже.

    Коэффициенты, учитывающие прочность обрабатываемого материала: Коэффициенты, учитывающие стойкость резца: Коэффициенты, учитывающие марку твердого сплава:

    Режимы резания при точении конструкционных и легированных сталей спределом прочности при разрыве

    σb = 75 кг/мм²
    резцами с пластинками Т15К6

    Требования, предъявляемые к современным токарным станкам

    К токарным станкам, предназначенным для высокопроизводительного точения, предъявляются более высокие требования, чем к обычным токарным станкам.

    При работе на высоких скоростях резания появляется опасность возникновения вибраций вследствие недостаточной жесткости станков, наличия излишних зазоров в подшипниках шпинделя и в подвижных соединениях суппорта, неуравновешенности отдельных быстро вращающихся частей станка, патрона или обрабатываемой детали.

    Следовательно, для спокойной без вибраций работы станка его отдельные части (шпиндель, суппорт, задняя бабка) должны обладать достаточной жесткостью, а вращающиеся части должны быть тщательно уравновешены.

    Мощность токарного станка для скоростного резания должна быть большей, так как, чем выше скорость резания, тем большая требуется мощность электродвигателя.

    Этим требованиям удовлетворяют станки, выпускаемые отечественной станкостроительной промышленностью, например то-карно-винторезный станок 1А62, подробно нами рассмотренный, станок 1К62 и др.

    Однако для высокопроизводительного резания можно в ряде случаев применять токарные станки старых моделей, имеющиеся на заводах, с некоторой переделкой их основных узлов.

    Такая переделка станков называется модернизацией

    Переделка существующих станков под высокопроизводительное резание в одних случаях сводится главным образом к увеличению чисел оборотов шпинделя и замене имеющегося электродвигателя более мощным; в других же случаях требуется более сложная переделка, например, приходится изменять устройство фрикционной муфты, главного привода, добавлять устройства для принудительной смазки шпинделя, усиливать отдельные звенья станка и т. д.

    Увеличение числа оборотов шпинделя является одним из широко применяемых мероприятий при переводе станков на скоростное резание и достигается изменением диаметров существующих шкивов. Одновременно заменяют также электродвигатель более мощным. Плоскоременную передачу от электродвигателя к станку заменяют клиноременной (см. рис. 2, б). Такая передача позволяет получить, не меняя ширины шкива, требуемую повышенную мощность и более высокое передаточное отношение.

    Станки, переводимые на скоростную обработку, должны быть тщательно проверены, а в случае необходимости отремонтированы. При ремонте следует обращать внимание на подшипники передней бабки, фрикционную муфту, суппорт и др. Подшипники шпинделя должны быть тщательно отрегулированы, зазоры в подвижных частях суппорта устранены путем подтяжки клиньев. Фрикционная муфта должна быть проверена, а в случае необходимости соответственно усилена. Станок должен быть всегда хорошо смазан, особенно его коробка скоростей.

    Прочная установка станка на фундаменте является необходимым условием для избежания вибраций, в особенности для станков с неуравновешенными вращающимися частями.

    1. Расскажите о порядке выбора глубины резания и подачи. 2. Выберите скорость резания при точении конструкционной стали σb = 75 кг/мм² при глубине резания t — 3 мм твердосплавным резцом Т15К6, пользуясь табл. 6, принимая подачу s = 0,2 мм/об. 3. Выберите скорость резания при точении σb = 50-60 кг/мм² при глубине резания t = 2 мм твердосплавным резцом Т5К10 при подаче s = 0,25 мм/об. 4. Выберите скорость резания при точении легированной стали σb = 100 кг/мм² при глубине резания t = 1 мм твердосплавным резцом Т30К4 при подаче s = 0,15 мм/об и при стойкости резца в 30 мин. 5. Каким основным требованиям должен удовлетворять токарный станок для скоростного резания? 6. Что называется модернизацией станка? 7. Перечислите основные пути, модернизации существующих станков для скоростного резания.

    предыдущая страница оглавление следующая страница

    Дополнительные материалы

    Во время изготовления, большинство специалистов руководствуются в качестве дополнительного пособия, приведенными ниже показателями. Таблица коэффициента прочности:

    Материал заготовки Граница прочности Шкала твердости по Бринеллю Коэффициент, МПа
    легированная и
    углеродистая сталь
    варьируется от
    400–1100 единиц
    1500–2600
    чугун, а также серый 1400–2200 1000–1200
    бронза 600
    силумин 450
    дуралюмин предел прочности
    от 250 до 350, но часто встречается и выше в зависимости от качества заготовки
    600–1100

    Коэффициент прочности материала:

    Сталь, кг/мм Значение показателя
    50,1–60,1 1,61
    60,1–70,3 1,27
    70,3–80,1 1,1
    80,3–90,1 0,87
    90,3–100,1 0,73
    Чугун, кг/мм Значение показателя
    140,1–160,3 1,50
    160,1–180,1 1,21
    180,1–200,3 1,1
    200,3–220,3 0,83

    Коэффициент стойкости резца:

    Значение стойкости, минуты Показатель
    27–30 1,27
    43–46 1,11
    57–60 1,09
    83–90 1,03

    Типы шпинделей по числу оборотов

    По данному показателю все валы разделяют на 3 категории:

    Источник