Развальцовка листового металла под резьбу

1. Разбортовка круглых отверстий. Схема расчета разбортовки малых отверстий под резьбу (до М5). Зазоры для разбортовки из плоской заготовки.

Процесс разбортовки заключается в том, что в деталях с предварительно пробитым отверстием образуют отверстия большего размера с цилиндрическим бортом (рис. 87, а) или увеличивают высоту цилиндра, образованного вытяжкой (рис. 87, б). При разбортовке происходит растяжение материала, сопровождаемое значительным его утонением на торце разбортованного отверстия

Рис. 87. Схема образования отверстия большего размера (а) и увеличения высоты цилиндра (б) способом разбортовки

Толщина материала на торце разбортованного отверстия приближенно может быть определена по формуле (184)

Наибольшая высота разбортовки, образуемая за один переход, (185)

где k — коэффициент разбортовки.

При значении Н>Hнаиб отбортовку следует осуществлять после предварительной вытяжки и пробивки отверстия (рис. 87, б).

Диаметр отверстия под разбортовку приближенно равен (186)

Максимально допустимый диаметр отверстия, разбортованного за одну операцию -, где d — диаметр отверстия в заготовке.

В табл. 72 приведены значения коэффициентов разбортовки для различных материалов.

72. Значения коэффициентов разбортовки

Сталь малоуглеродистая, S = 0, 25-: -2 мм

Сталь малоуглеродистая, S = 3 -: — 6 мм

Латунь, S =0, 5 -: — 6 мм

Алюминий S = 0, 5 -: — 5 мм

ВТ1 в холодном состоянии

ВТ1 при нагреве до 300—400° С

ВТ5 в холодном состоянии

ВТ5 при нагреве до 500—600° С

Материалы Коэффициенты разбортовки
k kнаим.
0,70—0,65 0,55

1. Значения kнаим рекомендуются в исключительных случаях, когда на разбортованной стенке допустимы небольшие трещины и надрывы.

2. Все материалы даны в разупрочненном состоянии.

При разбортовке в несколько операций с промежуточным отжигом коэффициент разбортовки для последующих операций (k) принимают по формуле k=(1,15-1,2)k, (187)

где k — коэффициент разбортовки для первой операции.

Если разбортовку применяют для увеличения высоты стенок цилиндрических вытянутых деталей, то наибольшая допустимая высота разбортовки (188)

Диаметр отверстия, пробиваемого в дне детали под разбортовку, определяют по формуле d = D+1,14R-2h. (189)

Малые отверстия разбортовывают для увеличения высоты резьбовой части детали за счет утонения стенок (рис. 88) толщина которых равна (190)

Диаметр мелких отверстий под разбортовку для резьбы (до М5) или гладких отверстий до диаметра 4 мм равен d0=0,45d1

Высота разбортовки мелких отверстий приближенно равна h = (2-: — 2,5) S.

Во избежание разрыва при разбортовке в заготовках необходимо снимать заусенцы, а при больших толщинах материала — отжигать заготовки с целью устранения упрочнения кромки после пробивки отверстия. С этой целью рекомендуется при конструировании штампов направление разбортовки принимать противоположным направлению пробивки (рис. 89).

Радиусы закруглений рабочих кромок матрицы при разбортовке принимаются равными 0,5S.

Рекомендуемые формы пуансонов при разбортовке показаны на рис. 90. Если в штампе для разбортовки есть прижим, как, например, при совмещении разбортовки с вытяжкой, разбортовочные пуансоны могут быть без буртиков N.

Рис. 88. Схема расчета разбортовки малых отверстий под резьбу (до М5)

Рис. 89. Схема направления пробивки (а) и разбортовки (б):

1 — сторона заусенца, 2 — зона наклепа, образовавшегося при пробивке отверстия


Рис. 90. Формы пуансонов: а — для одновременной пробивки и разбортовки; б—для разбортовки (с ловителем) отверстий диаметром свыше 10 мм; в — для разбортовки отверстий диаметром до 10 мм; г —для разбортовки (без ловителя) отверстий диаметром свыше 10 мм

Зазоры между пуансоном и матрицей следует принимать по табл. 73 — для разбортовки из плоской заготовки, по табл. 74 — для разбортовки из предварительно вытянутой заготовки.

Для разбортовки мелких отверстий под резьбу зазор принимают равным 0, 65S.

73. Зазоры для разбортовки из плоской заготовки

74. Зазоры для предварительно вытянутых заготовок

Источник

Развальцовка листового металла под резьбу

Пластическое сверление и формирование резьбы в тонкостенных металлических конструкциях

Из истории

Ещё в 1923 году Жан Клод де Вальере в небольшом сарае во Франции смастерил необычный инструмент, с помощью которого отверстия в тонких стальных листах стало возможным выполнять посредством теплоты трения, а не сверления как ранее. Многочисленные опыты были в большинстве своём успешны, однако наладить его промышленное использование было невозможно по ряду причин из-за отсутствия:
– твёрдого металла, необходимого для инструмента,
– знаний о правильной геометрии инструмента,
– алмазных шлифовальных кругов для обработки твёрдых материалов,
– станков для шлифования сложных профилей.
Поэтому прошло ещё 60 лет, прежде чем все эти проблемы были решены, и стало возможным и выгодным использование выдавливающих свёрл. Таким образом, в промышленности появились новые нережущие выдавливающие свёрла.
Выдавливающие свёрла – это полигонально отшлифованные твёрдосплавные инструменты. При достаточно высоком числе оборотов и осевом усилии свёрл на тонкостенные металлические изделия, металл пластифицируется под действием теплоты трения, и сверло свободно проходит через заготовку. Одновременно с образованием отверстия из сместившегося вниз разогретого материала формуется втулка. Длина втулки в несколько раз превышает прежнюю толщину материала. Толщина металла может быть от 1 мм до 10 мм в зависимости от диаметра отверстия.
Имеются разнообразные инструменты для выполнения в тонкостенных партиях упрочнённой резьбы, для изготовления опорных участков большой поверхности.
Данный метод сверления успешно применяется уже несколько десятилетий в разных промышленных производствах. Для достижения оптимальных результатов пользователь должен хорошо изучить данную технологию, варианты просверливания выдавливанием и учитывать предъявляемые к станку требования.


Процесс сверления выдавливанием

В настоящем описании процесса сверления выдавливанием мы исходим из применения стандартного выдавливающего бура.
Часть сверла, подвергающаяся трению, имеет коническую форму (рис. 1). Конус рабочей части переходит в цилиндр. Коническая и цилиндрическая части образуют вместе рабочую сердцевину. Над ними расположена кромка для формирования плотного края отверстия и цилиндрический хвостовик для крепления сверла в цанге. И коническая, и цилиндрическая части в сечении имеют форму многоугольника, что имеет определяющее значение в процессе сверления выдавливанием. В качестве исходного материала при производстве выдавливающих свёрл используется специально разработанный для этого процесса, устойчивый к истиранию и смене теплового режима твёрдый металлический сплав.
• Фаза старта
Для начала процесса требуется достаточно высокое осевое усилие и высокое число оборотов, чтобы произвести между выдавливающим сверлом и заготовкой необходимую теплоту трения. При этом температура сверла повышается до 650–750 °С, а заготовки – примерно до 600 °С.
Число оборотов должно быть по возможности меньшим, чтобы сократить простои из-за нагрева сверла. Выбор числа оборотов в первую очередь зависит от диаметра отверстия под резьбу, он также определяется толщиной и сортом материала. Высоколегированные и нержавеющие стали требуют более низкого числа оборотов и, следовательно, при этом будет меньше простоев инструмента. Для мягких цветных материалов число оборотов должно быть выше. В целом следует отметить: чем мягче материал, тем больше нужно выбирать число оборотов.
Сила подачи повышается до тех пор, пока остриё сверла не пройдёт сквозь материал.
• Процесс сверления
Вытесненный материал сначала течёт против направления подачи, а затем, когда остриё выдавливающего сверла проходит сквозь материал, стекает вниз в направлении подачи сверла. Сила подачи медленно убывает, в то время как скорость подачи возрастает.
• Фаза формообразования
Рабочая сердцевина сверла выталкивает материал. Сила подачи понижается до нуля. Кромка выдавливающего сверла формирует из вытесняемого против направления подачи материала край в форме уплотнительного кольца.
Окончательная ширина и геометрическая форма изготовленной таким образом втулки зависит от выбранного диаметра отверстия для резьбы и соотношения конической и цилиндрической частей сверла.
На рис. 2 показан процесс сверления выдавливанием.

Типы свёрл FLOWDRILL

• FLOWDRILL тип «длинный»
К полигональному фрикционному конусу выдавливающего сверла примыкает тоже полигональная длинная цилиндрическая часть (рис. 3а).
Формованные выдавливанием втулки имеют цилиндрическую форму.
В завершении рабочего процесса материал, вытесняемый в направлении обратном направлению подачи посредством ровного края, формуется в своеобразную уплотнительную кромку.
• FLOWDRILL тип «короткий»
Этот тип был разработан специально для соединительных форм резьбы FLOWTAP в тонких материалах и имеет явно меньшую полигональную цилиндрическую часть (рис. 3в), чем у типа «длинный». Выполненные таким образом втулки преимущественно конической формы, отверстие уменьшается в диаметре, и толщина стенок втулки убывает. Эта форма влияет на равномерность деформации для резьбы FLOWTAP, и в результате инструмент производит полностью отформованную резьбу с высокой прочностью. При большей толщине материала необходимо применять для резьбы тип «длинный».
• FLOWDRILL тип «плоский»
Этот тип можно комбинировать с обоими выше описанными типами – «короткий» и «длинный» (рис. 3б и 3г). По краю сверла – шлифованная режущая кромка, которая удаляет вытесняемый против направления подачи материал. В результате сверления получают ровную заготовку. Шлифовку этой кромки для припасовки изготовитель может производить только один раз за весь срок эксплуатации.
• FLOWDRILL особые формы
В некоторых случаях обрабатываемая заготовка слишком плоская или поперечное сечение трубы недостаточно для выдавливающих свёрл стандартной длины. Тогда применяют особо короткие выдавливающие свёрла с большим углом при вершине.
• FLOWDRILL тип «REM»
В этом типе в конической части сверла шлифуются оба края режущей кромки, которые начинаются в острие сверла (рис. 4). Эти конструкции могут применяться в ручных дрелях, т. к. из-за шлифовки режущей кромки сила подачи уменьшается примерно на 1/3. Этот тип применяется на обрабатываемых или покрываемых гальванически поверхностях. Благодаря устранению поверхностного слоя можно избежать смазочного воздействия легкоплавких веществ.
Конструкция «REM» может комбинироваться со всеми выше названными типами. Однако применение сверла такого типа на низколегированных сталях и цветных металлах, а также на материалах с максимальной толщиной стенки 2 мм следует ограничивать.

Примеры применения FLOWDRILL

Приведём несколько примеров:
– паяные соединения большой поверхности с точной цилиндрической частью (основание теплообменника),
– скользящие опоры с высокой несущей способностью (откидной механизм соляриев),
– гнёзда шарикоподшипников и игольчатых роликоподшипников в тонкостенных трубах (муфта с крестовиной в рулевых стойках безопасности),
– выполнение резьбы.
Наиболее частое применение – изготовление резьбы. Поэтому далее будет подробнее рассказано об этом.

Формирование резьбы FLOWTAP

Наиболее часто сверление выдавливанием используется для изготовления отверстий под резьбу в тонкостенных трубах и листах. Резьбу можно, естественно, нарезать и с помощью метчиков, но в сочетании со сверлением выдавливанием рекомендуем холодную обработку давлением с помощью формовщика резьбы FLOWTAP (рис. 5).
Диаметр отверстия под резьбу при сверлении выдавливанием определяет глубину сторон профиля резьбы и тем самым прочность резьбы.
Преимущества формовщика резьбы относительно резьбонарезания:
– отсутствуют отходы,
– материал сохраняется полностью для снятия нагрузки,
– значительно возрастает прочность резьбы за счёт компрессии материала во время холодной обработки давлением при одновременно непрерывном характере расположения волокон на сторонах профиля резьбы,
– значительно возрастает рабочее число оборотов и, как следствие, производительность,
– нет срезов, благодаря точной направляющей резьбы,
– крайне долгий срок стойкости режущего инструмента и беспроблемная автоматизация,
– применим на любых обычных устройствах нарезания резьбы.

Смазка

Для процесса сверления выдавливанием были разработаны специальные смазочные вещества, которые через определённые интервалы между сверлениями следует наносить тонким слоем. Особенно рекомендуем регулярно смазывать переход от фрикционного конуса к цилиндрической части сверла и края.
Благодаря смазке FLOWDRILL:
– снижается рабочая температура сверла и, следовательно, возрастает срок стойкости,
– материал не остаётся на сверле,
– уменьшается износ,
– выше качество поверхности отформованной втулки,
– чисто выполненный край.
Из-за высоких значений усилия деформации при холодной прокатке возрастает сила трения. Следовательно, при каждом процессе формовки необходимо применять высококачественную смазку FLOWTAP. Вращающий момент при этом становится значительно ниже, что благотворно влияет на срок службы формовщика резьбы. Качество поверхности отформованной резьбы сильно улучшается.

Сверление выдавливанием на станках с ЧПУ

В начале процесса осевое усилие очень высоко, чтобы произвести между инструментом и заготовкой необходимое количество теплоты трения. Скорость подачи практически равна 0. Когда материал начинает становиться пластичным, то скорость подачи можно увеличить, пока остриё выдавливающего сверла не пройдёт материал. Необходимая скорость подачи может регулироваться вручную.
Чтобы выше описанный процесс симулировать на станке с ЧПУ, нужно начать его с очень малой скоростью подачи, которая будет постепенно повышаться до конца процесса. Параметры диаметра отверстия под резьбу, числа оборотов, сорта и толщины материала варьируются.

Обрабатываемые материалы

В общем, все материалы, обрабатываемые резанием, можно сверлить выдавливанием. Все тонкостенные поддающиеся сварке, легированные и нелегированные стали, алюминиевые сплавы, медь, бронза, магнитные материалы и особые сплавы можно обрабатывать по описанной технологии. Все материалы, которые можно сверлить выдавливанием, можно обрабатывать формовщиком резьбы FLOWTAP. Способность к обработке зависит от эластичности материала.
Хорошо подходят для этого:
– легированные и нелегированные стали (также нержавеющие и устойчивые к кислотам) с пределом прочности при растяжении примерно до 700 N/мм,
– цветные металлы (за исключением хрупких металлов как CuZn40Pb2),
– лёгкие металлы с содержанием кремния меньше 5 %.

Источник

Разбортовка отверстий под резьбу

Процесс разбортовки заключается в том, что в деталях с предварительно пробитым отверстием образуют отверстия большего размера с цилиндрическим бортом (рис. 87, а) или увеличивают высоту цилиндра, образованного вытяжкой (рис. 87, б). При разбортовке происходит растяжение материала, сопровождаемое значительным его утонением на торце разбортованного отверстия

Рис. 87. Схема образования отверстия большего размера (а) и увеличения высоты цилиндра (б) способом разбортовки

Толщина материала на торце разбортованного отверстия приближенно может быть определена по формуле (184)

Наибольшая высота разбортовки, образуемая за один переход, (185)

где k — коэффициент разбортовки.

При значении Н>Hнаиб отбортовку следует осуществлять после предварительной вытяжки и пробивки отверстия (рис. 87, б).

Диаметр отверстия под разбортовку приближенно равен (186)

Максимально допустимый диаметр отверстия, разбортованного за одну операцию -, где d — диаметр отверстия в заготовке.

В табл. 72 приведены значения коэффициентов разбортовки для различных материалов.

72. Значения коэффициентов разбортовки

Материалы Коэффициенты разбортовки
k kнаим.
0,70 0,65

Сталь малоуглеродистая, S = 0, 25-: -2 мм

Сталь малоуглеродистая, S = 3 -: – 6 мм

Латунь, S =0, 5 -: – 6 мм

Алюминий S = 0, 5 -: – 5 мм

ВТ1 в холодном состоянии

0,64—0,68 0,55

ВТ1 при нагреве до 300—400° С

0,60—0,50 0,45

ВТ5 в холодном состоянии

0,85—0,90 0,75

ВТ5 при нагреве до 500—600° С

0,70—0,65 0,55

1. Значения kнаим рекомендуются в исключительных случаях, когда на разбортованной стенке допустимы небольшие трещины и надрывы.

2. Все материалы даны в разупрочненном состоянии.

При разбортовке в несколько операций с промежуточным отжигом коэффициент разбортовки для последующих операций (k ) принимают по формуле k =(1,15-1,2)k, (187)

где k — коэффициент разбортовки для первой операции.

Если разбортовку применяют для увеличения высоты стенок цилиндрических вытянутых деталей, то наибольшая допустимая высота разбортовки (188)

Диаметр отверстия, пробиваемого в дне детали под разбортовку, определяют по формуле d = D+1,14R-2h. (189)

Малые отверстия разбортовывают для увеличения высоты резьбовой части детали за счет утонения стенок (рис. 88) толщина которых равна (190)

Диаметр мелких отверстий под разбортовку для резьбы (до М5) или гладких отверстий до диаметра 4 мм равен d0=0,45d1

Высота разбортовки мелких отверстий приближенно равна h = (2-: – 2,5) S.

Во избежание разрыва при разбортовке в заготовках необходимо снимать заусенцы, а при больших толщинах материала — отжигать заготовки с целью устранения упрочнения кромки после пробивки отверстия. С этой целью рекомендуется при конструировании штампов направление разбортовки принимать противоположным направлению пробивки (рис. 89).

Радиусы закруглений рабочих кромок матрицы при разбортовке принимаются равными 0,5S.

Рекомендуемые формы пуансонов при разбортовке показаны на рис. 90. Если в штампе для разбортовки есть прижим, как, например, при совмещении разбортовки с вытяжкой, разбортовочные пуансоны могут быть без буртиков N.

Рис. 88. Схема расчета разбортовки малых отверстий под резьбу (до М5)

Рис. 89. Схема направления пробивки (а) и разбортовки (б):

1 — сторона заусенца, 2 — зона наклепа, образовавшегося при пробивке отверстия


Рис. 90. Формы пуансонов: а — для одновременной пробивки и разбортовки; б—для разбортовки (с ловителем) отверстий диаметром свыше 10 мм; в — для разбортовки отверстий диаметром до 10 мм; г —для разбортовки (без ловителя) отверстий диаметром свыше 10 мм

Зазоры между пуансоном и матрицей следует принимать по табл. 73 — для разбортовки из плоской заготовки, по табл. 74 — для разбортовки из предварительно вытянутой заготовки.

Для разбортовки мелких отверстий под резьбу зазор принимают равным 0, 65S.

73. Зазоры для разбортовки из плоской заготовки

74. Зазоры для предварительно вытянутых заготовок

Несмотря на то, что нарезание внутренней резьбы не относится к сложным технологическим операциям, существуют некоторые особенности подготовки к этой процедуре. Так, следует точно определить размеры подготовительного отверстия под нарезание резьбы, а также правильно подобрать инструмент, для чего используются специальные таблицы диаметров сверл под резьбу. Для каждого из типов резьбы необходимо использовать соответствующий инструмент и рассчитывать диаметр подготовительного отверстия.

Диаметр резьбы и проходное отверстие должны соответствовать стандартам, иначе канавки выйдут слишком маленькие и резьбовое соединение будет ненадежным

Разновидности и параметры резьбы

Параметрами, по которым резьбу разделяют на различные типы, являются:

  • единицы исчисления диаметра (метрическая, дюймовая и др.);
  • количество заходов ниток (одно-, двух- или трехзаходная);
  • форма, в которой выполнены элементы профиля (треугольная, прямоугольная, круглая, трапециевидная);
  • направление подъема витков (правая или левая);
  • место размещения на изделии (наружная или внутренняя);
  • форма поверхности (цилиндрическая или коническая);
  • назначение (крепежная, крепежно-уплотнительная, ходовая).

Параметры метрической резьбы

В зависимости от вышеперечисленных параметров различают следующие виды резьбы:

  • цилиндрическая, которая обозначается буквами MJ;
  • метрическая и коническая, обозначаемые соответственно M и MK;
  • трубная, для обозначения которой используются буквы G и R;
  • с круглым профилем, названная в честь Эдисона и маркируемая буквой E;
  • трапецеидальная, обозначаемая Tr;
  • круглая, используемая для монтажа сантехнической арматуры, – Кр;
  • упорная и упорная усиленная, маркируемые как S и S45 соответственно;
  • дюймовая резьба, которая также может быть цилиндрической и конической, – BSW, UTS, NPT;
  • используемая для соединения труб, монтируемых в нефтяных скважинах.

Типы резьбы по ГОСТ-ам

Применение метчика

Прежде чем приступить к резьбонарезанию, надо определить диаметр подготовительного отверстия и выполнить его сверление. Для облегчения этой задачи был разработан соответствующий ГОСТ, который содержит таблицы, позволяющие точно определить диаметр отверстия под резьбу. Эти сведения позволяют легко подобрать размер сверла.

Для нарезания резьбы метрического типа на внутренних стенках сделанного сверлом отверстия используется метчик – винтообразный инструмент с режущими канавками, выполненный в виде стержня, который может иметь цилиндрическую или коническую форму. На его боковой поверхности есть специальные канавки, расположенные вдоль его оси и разделяющие рабочую часть на отдельные сегменты, которые называются гребенками. Острые края гребенок как раз и являются рабочими поверхностями метчика.

Метчик: конструкция и параметры

Чтобы витки внутренней резьбы получились чистыми и аккуратными, а ее геометрические параметры соответствовали требуемым значениям, ее надо нарезать постепенно, путем поэтапного снятия тонких слоев металла с обрабатываемой поверхности. Именно поэтому с данной целью используют либо метчики, рабочая часть которых по длине разделена на участки с различными геометрическими параметрами, либо наборы таких инструментов. Единичные метчики, рабочая часть которых имеет одинаковые геометрические параметры по всей своей длине, нужны в тех случаях, когда необходимо восстановить параметры уже имеющейся резьбы.

Минимальным набором, при помощи которого можно достаточно качественно выполнить обработку отверстий под резьбу, является комплект, состоящий из двух метчиков – чернового и чистового. Первый срезает со стенок отверстия под нарезание метрической резьбы тонкий слой металла и формирует на них неглубокую канавку, второй не только углубляет сформированную канавку, но и зачищает ее.

Разновидности метчиков для резьбы и их отличия

Минимальный комплект метчиков

Комбинированные двухпроходные метчики или наборы, состоящие из двух инструментов, используются для резьбонарезания в отверстиях небольших диаметров (до 3 мм). Для обработки отверстий под метрическую резьбу большего диаметра необходимо использовать комбинированный трехпроходной инструмент или набор, состоящий из трех метчиков.

Для манипуляций с метчиком применяется специальное приспособление – вороток. Главным параметром таких приспособлений, которые могут иметь различное конструктивное исполнение, является размер посадочного отверстия, который должен точно совпадать с размером хвостовика инструмента.

Некоторые разновидности воротков для метчиков

При использовании набора из трех метчиков, отличающихся как своей конструкцией, так и геометрическими параметрами, следует строго соблюдать последовательность их применения. Отличить их друг от друга можно как по специальным рискам, нанесенным на хвостовики, так и по конструктивным особенностям.

  1. Метчик, которым отверстие под нарезание метрической резьбы обрабатывается в первую очередь, отличается минимальным диаметром среди всех инструментов набора и режущими зубьями, верхняя часть которых сильно обрезана.
  2. Второй метчик имеет более короткую заборную часть и более длинные гребни. Его рабочий диаметр занимает промежуточное значение между диаметрами остальных инструментов из набора.
  3. Третий метчик, которым отверстие под нарезание метрической резьбы обрабатывается в последнюю очередь, характеризуется полными гребнями режущих зубцов и диаметром, который должен точно соответствовать размеру формируемой резьбы.

Комплект из трех метчиков

Метчики используются преимущественно для нарезания резьбы метрического типа. Значительно реже, чем метрические, применяются метчики, предназначенные для обработки внутренних стенок труб. Они в соответствии со своим назначением называются трубными, а отличить их можно по букве G, присутствующей в их маркировке.

Технология нарезания внутренней резьбы

Как уже говорилось выше, перед началом работы надо просверлить отверстие, диаметр которого должен точно подходить под резьбу определенного размера. Следует иметь в виду: если диаметры отверстий, предназначенных под нарезание метрической резьбы, выбраны неверно, это может привести не только к ее некачественному выполнению, но и к поломке метчика.

Учитывая тот факт, что метчик, формируя резьбовые канавки, не только срезает металл, но и продавливает его, диаметр сверла для выполнения резьбы должен быть несколько меньше, чем ее номинальный диаметр. Например, сверло под выполнение резьбы М3 должно иметь диаметр 2,5 мм, под М4 – 3,3 мм, для М5 следует выбирать сверло диаметром 4,2 мм, под резьбу М6 – 5 мм, М8 – 6,7 мм, М10 – 8,5 мм, а для М12 – 10,2.

Таблица 1. Основные диаметры отверстий под метрическую резьбу

Таблица 2. Диаметры отверстий под дюймовые резьбы

Все диаметры сверл под резьбу ГОСТ приводит в специальных таблицах. В таких таблицах указаны диаметры сверл под выполнение резьбы как со стандартным, так и с уменьшенным шагом, при этом следует иметь в виду, что для этих целей сверлятся отверстия разных диаметров. Кроме того, если резьба нарезается в изделиях из хрупких металлов (таких, например, как чугун), диаметр сверла под резьбу, полученный из таблицы, необходимо уменьшить на одну десятую миллиметра.

Ознакомиться с положениями ГОСТ, регламентирующими нарезание метрической резьбы, можно, скачав документ в формате pdf по ссылке ниже.

Диаметры сверл под метрическую резьбу можно рассчитать самостоятельно. От диаметра резьбы, которую требуется нарезать, необходимо вычесть значение ее шага. Сам шаг резьбы, размер которого используется при выполнении таких вычислений, можно узнать из специальных таблиц соответствия. Для того чтобы определить, какого диаметра отверстие необходимо выполнить с помощью сверла в том случае, если для резьбонарезания будет использоваться трехзаходный метчик, надо воспользоваться следующей формулой:

До = Дм х 0,8, где:

До – это диаметр отверстия, которое надо выполнить с помощью сверла,

Дм – диаметр метчика, которым будет обрабатываться просверленный элемент.

Схема нарезания внутреней резьбы метчиком

Воротки, в которые вставляется резьбовой метчик, могут иметь простейшую конструкцию или оснащаться трещоткой. Работать такими приспособлениями с зафиксированными в них инструментами следует очень аккуратно. Чтобы получить качественную и чистую резьбу, вращение метчика по часовой стрелке, совершаемое на пол-оборота, необходимо чередовать с его проворачиванием на одну четвертую оборота против хода резьбы.

Резьба будет нарезаться значительно легче, если в процессе выполнения этой процедуры использовать смазку. Роль такой смазки при нарезании резьбы в изделиях из стали может играть олифа, а при обработке алюминиевых сплавов – спирт, скипидар или керосин. Если таких технических жидкостей нет под рукой, то для смазки метчика и нарезаемой резьбы можно использовать обычное машинное масло (однако оно обладает меньшим эффектом, чем перечисленные выше вещества).

25. Отверстия под нарезание метрической резьбы (по ГОСТ 19257-73)

Диаметры отверстия под нарезание метрической резьбы по ГОСТ 9150-81, ГОСТ 24705-81 с допусками по ГОСТ 16093-81 в сером чу1уне по ГОСТ 1412-85, в сталях по ГОСТ 380-94, ГОСТ 1050-88, ГОСТ 4543-71, ГОСТ 10702-78, ГОСТ 5632-72 (кроме сплавов на никелевой основе), в алюминиевых литейных сплавах по ГОСТ 1583-93, в меди по ГОСТ 859-78.

Размеры и предельные отклонения диаметров отверстий резьб с крупным шагом

Номинальный
диаметр
резьбы d

Диаметр отверстая под резьбу с полем допуска

4Н5Н; 5Н;
5Н6Н; 6Н; 7Н

ГОСТ предусматривает отверстия для резьб ы с крупным шагом

Номинальный диаметр резьбы d

Шаг резьбы Р

Диаметр отверстая под резьбу с полем допуска

4Н5Н; 5Н;
5Н6Н; 6Н; 7Н 6G; 7G 4Н5Н; 5Н 7Н; 7G

ГОСТ предусматривает отверстия для резьб с Д = 1,0 – 200 мм и для с1 3-го ряда.
ГОСТ предусматривает методику определения диаметров отверстий под нарезание метрической резьбы для материалов повышенной вязкости.

27. Диаметры отверстий под нарезание дюймовой конической резьбы с углом профиля 60° по ГОСТ 6111-52

Размеры отверстий под нарезание резьбы распространяются на металлы и сплавы, не обладающие повышенной вязкостью.

С развертыванием на конус

Без развертывания на конус

Размер резьбы,
дюймы

Число шагов
на 1″

Шаг резьбы
Р Внутренний
диаметр
резьбы d1

Диаметр отверстия с развертыванием на конус

Диаметр отверстия без развертывания на конус

28. Диаметры отверстий под нарезание трубной цилин д рической резьбы (по ГОСТ 21348-75)

Диаметры отверстий под нарезаиие трубной цилиндрической резьбы по ГОСТ 6357-81 в изделиях из сталей по ГОСТ 380-94, ГОСТ 4543-71, ГОСТ 1050-88 и ГОСТ 5632-72 (кроме сплавов на никелевой основе) и меди по ГОСТ 859-78.

Номинальный размер резьбы, дюймы

Число шагов на 1″

Диаметр отверстия под резьбу

Номинальный размер резьбы, дюймы

Число шагов на 1″

Диаметр оэтверстия под резьбу

Отклонения для классов точности

Отклонениядля классов точности

62,80
72,27
78,62
84,97
91,07
97,42
103,77
110,12
122,82
135,52
148,22
160,92

ГОСТ 21348-75 допускает под нарезание трубной цилиндрической резьбы применять отверстия других диаметров, полученных на основании экспериментальных данных.

29. Отверстия под нарезание трубной конической резьбы (ГОСТ 21350-75)

Отверстия предназначены под нарезание трубной конической резьбы по ГОСТ 6211-81 в изделиях из сталей по ГОСТ 380-94, ГОСТ 4543-71, ГОСТ 1050-88, ГОСТ 5632-72 (кроме сплавов на никелевой основе) и меди по ГОСТ 859-78.

С развертыванием на конус
Без развертывания на конус

Число шагов
на 1″

Отверстие с развертыванием на конус

Отверстие раз- вертывания
безна конус

Для резъб с номинальным размером свыше 2″ номинальные диаметры отверстий dо и их предельные отклонения должны быть равны установленным ГОСТ 6211-81 для внутреннего диаметра резьбы.
Допускается под иарезание трубной конической резьбы применять отверстия других диаметров, полученных на основании экспериментальных данных.

30. Сквозные отверстия под крепежные детали (ГОСТ 11284-75)

Стандарт устанавливает размеры сквозных отверстий под болты, винты, шпильки и заклепки с диаметрами стержней от 1,0 до 160 мм, применяемых для соединения деталей с зазорами.

А. Диаметры сквозных отверстий Размеры, мм

Диаметр стержней крепеж-
ных деталей

Диаметр сквозных отверстий dh
(см. рис. 1)

Диаметр стержней крепеж-
ных деталей

Диаметр сквозных отверстий dh (см. рис. 1)

1. 3-й рад отверстий не допускается применять для заклепочных соединений.
2. Предельные отклонения диаметров отверстий: для1-го рада – по Н12; для 2-го рада по Н13; для 3-го рада – по Н14.
3 . Размеры в скобках применять не рекомендуется.

Б. Рекомендуемые ряды сквозных отверстий

Количество и раcположениее отверстий

Способ образования отверстий

Тип соединения (см. рис. 1)

Рекомендуемый ряд сквозных отверстий

Любое количество отверстий и любое их
расположение

Обработка отверстий по кондукторам

Отверстия расположены в один ряд и координарованы относительно оси отверстия или базовой плоскости

Пробивка отверстий штампами повышенной точности под давлением и литье по выплавляемым моделям повышенной точности

Отверстия (не более четырех расположены в два ряда и координированы относительно их осей.

Обработка отверстий по разметке, пробивка штампами обычной точности, литье нормальной точности

Отверстия расположены в два ряда и более относительно осей отверстий или базовых плоскостей

Пробивка отверстий штампами повышенной точности, литье под давлением и литье по выплавляемыммоделям повышеннойточности

Оверстия расположены по окружности

Обработка отверстий по разметке, пробивка штампами обычной точности, литье нормальной точности

Рекомендации по выбору радов сквозных отверстий

Рис.1 Типы соединений крепежными деталями

1. При независимой обработке отверстий каждой детали соединения с расстоянием между осями наиболее удаленных отверстий менее 500 мм для соединений, к которым предъявляются лишь требования собираемости, ряды сквозных отверстий рекомендуется выбирать по табл. 30.

2. Для соединений, к которым предъявляются требования собираемости и дополнительные требования обеспечения определенной степени относительного перемещения деталей, а также для соединений, к которым предъявляются лишь требования собираемости, но с расстоянием между осями наиболее удаленных отверстий в деталях 500 мм и более, допускается принимать более грубые (по сравнению с рекомендуемыми в табл. 30) ряды сквозных отверстий.

3. При совместной обработке отверстий в деталях соединения (для заклепочных и неразбираемых болтовых соединений) номинальный диаметр сквозного отверстия рекомендуется принимать равным наибольшему предельному размеру диаметра стержня крепежной детали. При этом отверстия должны быть раззенкова-ны на размер, соответствующий переходному радиусу между головкой и стержнем крепежной детали.

4. При необходимости следует устранить контакт кромки отверстия с радиусом под головкой крепежной детали, отверстие рекомендуется раззенковать.

31. Отверстия под концы установочных винтов (ГОСТ 12415-80) Размеры, мм

Номинальный диаметр
резьбы винта d

Источник

Читайте также:  Кондуктор для сварки листового металла
Поделиться с друзьями
Металл
Adblock
detector