Протекторная защита металлов от коррозии примеры

Примеры защиты металлов от коррозии

Решение задач по химии на покрытие металлов

Задание 284.
Если пластинку из чистого цинка опустить в разбавленную кислоту, то начавшееся выделение водорода вскоре почти прекращается. Однако при прикосновении к цинку медной палочкой на последней начинается бурное выделение водорода. Дайте этому объяснение, составив электронные уравнения анодного и катодного процессов. Напишите уравнения протекающей химической реакции.
Решение:
При опускании пластинки из чистого цинка в раствор разбавленной кислоты, начавшееся выделение водорода вскоре почти прекратится, потому что на пластинке из цинка образуется оксидная плёнка, которая будет препятствовать дальнейшему взаимодействию цинка с разбавленной кислотой. Оксидная плёнка образуется при взаимодействии цинка с кислородом, растворённым в воде по схеме:

Если прикоснуться к цинковой пластинке медной палочкой, то возникнет гальваническая пара цинк — медь, в которой цинк будет являться анодом, а медь – катодом. Это происходит, потому что стандартный электродный потенциал цинка (-0,763 В) значительно отрицательнее, чем потенциал меди (+0,34 В).

Анодный процесс: Zn 0 — 2 = Zn 2+
Катодный процесс в кислой среде: 2Н + + 2 = H2

Образующиеся ионы Zn 2+ будут с имеющимися анионами кислоты давать соль, а ионы водорода Н + , деполяризуясь на медной палочке, Zn 0 — 2 = Zn 2+ образуют водород, который в виде пузырьков газа выделяется из раствора. Ионно-молекулярное уравнение реакции будет иметь вид:

Zn + 2H + = Zn 2+ + H2

Задание 285.
В чем сущность протекторной защиты металлов от коррозии? Приведите пример протекторной защиты железа в электролите, содержащем растворенный кислород. Составьте электронные уравнения анодного и катодного процессов.
Решение:
Для предотвращения коррозии стальных конструкций применяется протекторная защита: создаётся электрический контакт защищаемой конструкции с протектором – более активным металлом (обычно Zn, Mg, Al или их сплавы). При таком контакте возникает гальваническая пара типа Zn — Fe и коррозии подвергается протектор, а не сама стальная конструкция (трубопровод, корпус корабля и т.п.). Например, корпус корабля защищают протектором – цинковые брусья, которые крепят в нескольких местах днища корабля. Под действием морской воды и кислорода цинк разрушается, а корпус корабля защищается, таким образом, от коррозии. При этом протекают следующие электрохимические процессы:

Анодный процесс: Zn 0 — 2 = Zn 2+ ;
Катодный процесс:
а) в нейтральной или щелочной среде: 1/2O2 + H2O + 2 = 2OH — ;
б) в кислой среде: 1/2O2 + 2H + + 2 = H2O

Таким образом, цинк разрушается, окисляясь до ионов Zn2+, которые с гидроксильными ионами образуют нерастворимый гидроксид Zn(OH)2 или в виде ионов Zn2+ уходит в раствор, если реакция среды кислая. Основной металл остаётся неповреждённым.

Задание 286.
Железное изделие покрыли никелем. Какое это покрытие — анодное или катодное? Почему? Составьте электронные уравнения анодного и катодного процессов коррозии этого изделия при нарушении покрытия во влажном воздухе и в хлороводородной (соляной) кислоте. Какие продукты коррозии образуются в первом и во втором случаях?
Решение:
Железо имеет более электроотрицательный стандартный электродный потенциал (-0,44 В), чем никель (-0,24 В), поэтому железо является анодом, никель – катодом.

Анодный процесс – окисление металла: Fe 0 — 2 = Fe 2+

и катодный процесс – восстановление ионов водорода (водородная деполяризация) или молекул кислорода (кислородная деполяризация). Поэтому при коррозии пары Fe — Ni с водородной деполяризацией происходит следующие процессы:

Анодный процесс: Fe 0 — 2 = Fe 2+
Катодный процесс: в кислой среде: 2Н + + 2 = Н2

Продуктом коррозии будет газообразный водород соединение железа с кислотным остатком (соль).

Читайте также:  Художественный металл декоративно при

При коррозии пары Fe — Ni в атмосферных условиях на катоде происходит кислородная деполяризация, а на аноде – окисление железа:

Анодный процесс: Fe 0 — 2 = Fe 2+
Катодный процесс:
в нейтральной среде: 1/2O2 + H2O + 2 = 2OH —

Так как ионы Fe 2+ с гидроксид-ионами ОН — образуют нерастворимый гидроксид, то продуктом коррозии будет Fe(OH)2. При контакте с кислородом воздуха Fe(OH)2 быстро окисляется до метагидроксида железа FeO(OH), приобретая характерный для него бурый цвет:

Так как никель имеет более электроположительный стандартный электродный потенциал, чем железо, то данное покрытие является катодным. При повреждении катодного покрытия (или наличия пор) возникает коррозионный элемент, в котором основной материал в поре служит анодом и растворяется, а материал покрытия – катодом, на котором выделяется водород или поглощается кислород. Следовательно, данное катодное покрытие может защищать железо от коррозии лишь при отсутствии пор и повреждений покрытия.

Источник

Протекторная защита металла: холодное цинкование

Коррозия металла

Коррозия металла — самопроизвольное разрушение металла в результате химического или физико-химического взаимодействия с окружающей средой.

Цинк и его антикоррозионные свойства

Свойства цинка, которые определяют эффективность его применения для антикоррозионной защиты стали. Цинк — серебристо-белый, в нормальных условиях довольно хрупкий металл плотностью

7.1 г/см3 и температурой плавления около 420°C.

Так же, как и железо, цинк относится к группе металлов повышенной термодинамической нестабильности, имеющей значение электродного потенциала меньше, чем потенциал водородного электрода при pH=7 (-0.413 В).

Однако вода почти не действует на цинк. Это объясняется тем, что при взаимодействии цинка с водой на его поверхности образуется гидроксид, который практически не растворим и препятствует дальнейшему течению реакции. Даже в слабокислой среде коррозия чистого цинка замедлена, что связано с достаточно высоким значением перенапряжения выделения водорода на цинке (

При содержании в цинке сотых долей процента примесей таких металлов, как, например, медь и железо, имеющих меньшее значение перенапряжения выделения водорода (соответственно 0.6 и 0.5 В), скорость взаимодействия цинка с кислотами увеличивается в сотни раз.

На воздухе цинк окисляется, покрываясь тонкой, но прочной пленкой оксида или основного карбоната цинка. Эта пленка надежно защищает его от дальнейшего окисления и обуславливает высокую коррозийную стойкость.

В противоположность этому ржавчина, например, не образует сплошной пленки на поверхности железа и между отдельными кристаллами гидратированного оксида трехвалентного железа, имеются большие просветы, наличием которых и объясняется склонность железа к прогрессирующей коррозии.

Высокие противокоррозионные свойства цинка при нанесении его на железо (сталь) обусловлены еще и тем, что цинк имеет электрохимический потенциал ниже, чем железо (-760 и -440 мВ, соответственно), поэтому в электрохимической паре цинк-железо, возникающей в присутствии воды (влаги), цинк выполняет роль анода и растворяется, а металлическая подложка (железо) роль катода:

Zn – 2e ↔ Zn2 + H2O + ½O2 + 2e ↔ 2OH¯

В результате чего, имеет место пассивация стали за счет подщелачивания.

Ионы цинка реагируют с диоксидом углерода, находящимся в воздухе. Это сопровождается образованием плотных слоев нерастворимых карбонатов цинка, тормозящих дальнейшее развитие коррозионного процесса.

Источник

Недорого и эффективно — протекторная защита от ржавчины

Несмотря на повсеместное применение пластика, металлические трубопроводы по-прежнему широко применяются для транспортировки кислот, щелочей, газов, нефтепродуктов и пр. Такие сооружения со временем начинают приходить в негодность из-за атмосферной, химической и других видов коррозии. Несмотря на то, что это естественный процесс, его, тем не менее, можно замедлить. Для этого и существует протекторная защита металла от коррозии.

Причины повреждения металлических конструкций

Причин для коррозии металлических изделий достаточно:

  1. Химические реакции. Разрушение происходит при взаимодействии металла с различными химическими соединениями (кислотами, щелочами и пр.). Возникающая как продукт химической реакции ржавчина последовательно разъедает трубопровод.
  2. Электрохимические процессы. Этот вид коррозии один из самых агрессивных. Появляется, если труба или судно находится в электролите, где образовываются катоды и аноды. Возникающая ржа быстро распространяется, повреждая самый толстый металл.
  3. Атмосферные явления. При взаимодействии металла с водой, паром, воздухом выделяется оксид железа, который и разрушает сооружение.

Перед планированием работ по защите от коррозии необходимо провести оценку факторов, влияющих на металлическую поверхность.

Защита металла от коррозии

От коррозии необходимо защищать различные емкости, корпусы судов, резервуары, которые эксплуатируются в экстремальных условиях. Существует несколько вариантов формирования защиты:

  • обработка химическими составами;
  • покрытие стенок защитными материалами;
  • предупреждение блуждающих токов;
  • организация катода или анода.
Читайте также:  Новосибирский завод резки металла сбис

Защита металла от ржавчины предполагает целый комплекс мер:

  1. Пассивные действия. Во время монтажа трубопровода до прилежащей почвы оставляют некоторый зазор. Он предупреждает попадание грунтовых вод с примесями на металлическую поверхность. Трубопровод покрывают специальными составами, которые защищают металл от негативного воздействия грунта. Затем наносят специальные химические вещества, образующие защитную пленку на металлической поверхности.
  2. Активная защита. Создается электродренажная система, защищающая трубопровод от блуждающих токов. Металлическую поверхность от разрушения защищают созданием анода или катода.

Что такое протекторная защита?

Протекторная защита — вариант антикоррозийной обработки, которая предполагает контакт металлической предохраняемой поверхности с протектором – ингибитором, более активным металлом. Под воздействием воздуха ингибитор предохраняет основное изделие (трубопровод, систему водоснабжения или отопления, корпус корабля и пр.) от разрушения.

Протекторная защита металлов от коррозии является оптимальной при отсутствии возможности проведения специальных электрических линий для создания эффективной катодной защиты перед электрохимической ржавчиной либо при нецелесообразности такого метода. Применять протекторную защиту целесообразно на малогабаритных объектах либо в случаях, когда поверхность обрабатываемого сооружения покрыта изоляционным материалом.

Протектор может полностью предохранить от повреждения основной объект в случае, если показатель переходного сопротивления между объектом и окружающей средой незначительный.

Но протекторная защита от коррозии имеет положительный эффект только на каком-то расстоянии, то есть каждый из видов протекторов имеет свой радиус антикоррозийного действия. Это максимальное расстояние протектора от предохраняемого объекта.

Для антикоррозийной защиты применяют установки, которые состоят из одного или нескольких протекторов, соединительных кабелей и контрольно-измерительных участков. Если есть необходимость, то в схему включают шунты, регулирующие резисторы, поляризованные элементы. Монтируют установки ниже уровня промерзания грунта (не менее 1 метра). Располагают протектор на расстоянии 3 — 7 метров от защищаемого сооружения. Более близкое может спровоцировать повреждение изоляционного слоя солями растворяющегося ингибитора.

Протекторная защита от коррозии трубопроводов предполагает, что электроны более активного металла будут присоединяться к ионам менее активного вещества. В результате такого взаимодействия происходят два процесса:

  1. Менее активный металл восстанавливается.
  2. Протектор окисляется, защищая основное сооружение от коррозии.

Так как во время активного взаимодействия с окружающей средой и трубопроводом протектор полностью «растворяется» или просто теряет контакт с предохраняемым сооружением, то защитный механизм периодически необходимо восстанавливать.

Особенности протекторной защиты

Учитывая физико-химические особенности такой защиты металлических сооружений, можно сделать вывод о нецелесообразности применения протектора в случае, если конструкция эксплуатируется в кислых средах. Протекторная защита рекомендована к применению, если сооружение находится в нейтральной среде (грунт, вода, воздух и пр.).

Чтобы защитить железный трубопровод, в качестве протектора имеет смысл использовать кадмий, хром, цинк, магний (более активные металлы). Но и при их использовании существует ряд нюансов.

Например, чистый магний имеет высокую скорость ржавления, чистый цинк из-за крупнозернистой структуры растворяется неравномерно, алюминий быстро покрывается оксидной пленкой. Чтобы предотвратить негативные явления, в чистое вещество, которое будет служить протектором, вводят легирующие составляющие. Фактически протектором выступает не чистый металл, а его сплав с другими веществами.

Магниевая защита

Чаще всего в качестве защиты применяют сплавы магния. Легирующими компонентами состава выступают алюминий (максимум 7 %), цинк (до 5 %), также вводят медь, свинец и никель, но их суммарная доля не превышает сотой части состава. В качестве протектора такие составы могут применяться в средах с показателем кислотности не выше 10,5.

Читайте также:  Узи при предстательной железе подготовка

Даже в составе сплава магний быстро растворяется, а потом на его верхнем слое появляются труднорастворимые соединения. Магниевые сплавы имеют существенный недостаток — после нанесения они могут спровоцировать растрескивание металлических изделий, способствовать возникновению повышенной водородной хрупкости.

Цинковая защита

Альтернативой магниевому сплаву для защиты конструкций, расположенных в соленой воде, выступают цинковые составы. Легирующими компонентами для цинка становятся кадмий (максимальный показатель 0,15 %), алюминий (менее 0,5 %) и незначительное количество железа, свинца и меди (суммарно до 0,005 %). От влияния морской воды такой протектор будет идеальным, но в нейтральных средах протекторы из цинкового сплава быстро покроются оксидами и гидроксидами, сведя на нет весь антикоррозийный комплекс.

Цинковые сплавы выступают как протекторы от коррозии, обеспечивая максимальную взрыво- и пожарную безопасность. Этими составами целесообразно обрабатывать трубопроводы для горючих и взрывоопасных веществ, например, газа. Еще один «балл» в свой актив такие составы получают за экологическую безопасность – при анодном растворении не образуется загрязняющих веществ. Поэтому цинковые композиции часто применяются для коррозийной защиты нефтепроводов, а также для транспортирующих нефть танкеров и судов.

От воздействия проточной соленой воды обычно применяют алюминиевые составы. В сплав также вводят цинк (до 8 %), магний (до 5 %) и индий с кремнием , таллием и кадмием с незначительной долей (до 0,02 %). Добавки предупреждают возникновение окислов на алюминии. Также алюминиевые сплавы пригодны в условиях, где используется магниевая защита.

Обработка агрессивных жидкостей

Повреждение металлических конструкций происходит как снаружи, так и внутри. Даже жидкость с нейтральным уровнем кислотности (вода) может быстро разрушить трубопровод, если в ее составе содержатся бикарбонаты, карбонаты, кислород, которые являются причиной возникновения ржавчины. Обычная очистка внутренних поверхностей в таких сооружениях невозможна. Оптимальным выходом будет предварительное введение в жидкость соды, карбоната натрия или кальция. Такой обработкой воды можно снизить агрессивность транспортируемой жидкости.

Подземные емкости, изготовленные из цинковых сплавов, защищают путем введения в транспортируемую или хранящуюся среду силикатов, фосфатов или поликарбонатов. В результате химической реакции на цинковой поверхности появляется тонкая пленка, предупреждающая развитие ржавчины.

Преимущества и недостатки протекторной защиты

Преимуществами такого метода являются:

  • простота, автономность и экономичность благодаря отсутствию источника тока и использованию магниевых, алюминиевых или цинковых сплавов;
  • возможность формирования одиночных или групповых установок;
  • возможность применения протекторной защиты, как для проектируемых объектов, так и для уже эксплуатируемых конструкций;
  • организация защиты практически в любых условиях, где невозможно или нецелесообразно сооружать источники тока;
  • при правильном использовании система может работать достаточно долго без всякого обслуживания;
  • безопасность и возможность применения на взрывоопасных объектах (ввиду малости напряжений).

Но у такого вида защиты от ржавчины есть свои недостатки:

  1. Ограниченность применения способа в плохо проводящих ток средах.
  2. Безвозвратные потери протектора.
  3. Возможность загрязнения прилегающих территорий.

Как увеличить эффективность протекторов?

Чаще всего протекторные композиции применяются совместно с лакокрасочными составами, имеющими антикоррозийные свойства. Лакокрасочная защита самостоятельно не дает нужного эффекта, но при сочетании с протектором:

  • позволяет устранить изъяны покрытия металлического сооружения, которые возникают в процессе эксплуатации (вспучивание, отслоение, набухание металла, появление трещин и пр.);
  • снижает расход протекторных составов, увеличивая срок службы (при довольно высокой стоимости защитных сплавов это значимый эффект);
  • обеспечивает равномерное распределение защитного тока по поверхности металлического трубопровода.

Конечно, на эксплуатируемое судно или резервуар нанести лакокрасочный состав довольно сложно. В этом случае лучше отказаться от его применения, а использовать только протекторы.

Резюме

Практически все эффективные методы защиты от коррозии требуют расхода электрического тока. Протекторный способ позволяет предупредить ржавчину простым нанесением дополнительного слоя защитного сплава на трубу.

Источник

Поделиться с друзьями
Металл
Adblock
detector