При увеличении температуры проводимость металла

Температурная зависимость электропроводимости металлов

ЛЕКЦИЯ 15. ТЕРМОПЕЗИСТОРЫ

1. Температурная зависимость электропроводимости металлов

Электропроводность металлов, полупроводников и диэлектриков связана с наличием в них свободных носителей зарядов: электронов и дырок и их упорядоченным движением под действием электрического поля E. Движение носителей заряда под действием магнитного поля в настоящей работе не рассматривается. Проводимость σ определяется формулой

где q – элементарный заряд, n – концентрация электронов, р – концентрация дырок, μn – подвижность электронов, μp – подвижность дырок.

Существует три типа металлов, отличающихся по типу проводимости: электронные (проводимость связана с движением электронов), дырочные (проводимость связана с движением дырок) и металлы со смешенным типом проводимости (проводимость связана с движением электронов и дырок). У всех типов металлов концентрация носителей заряда очень слабо зависит от температуры [1]. Например, у электронных металлов она равна концентрации валентных электронов и составляет n

1022 штук на кубический сантиметр.

Подвижность носителей определяется химическим составом, структурой кристаллической решетки и температурой металла. У чистых металлов с идеальной кристаллической решеткой при температуре Т=0 К электроны движутся по волновым коридорам вдоль атомов, расположенных в узлах кристаллической решетки, при этом средняя длина свободного пробега электронов велика и сопротивление минимально. У некоторых металлов наблюдается явление сверхпроводимости. В настоящем издании это явление не рассматривается.

В реальных кристаллах всегда имеются атомы примесей и дефекты кристаллической решетки. На этих неоднородностях происходит рассеяние электронов, что приводит к уменьшению средней длины свободного пробега и увеличению электрического сопротивления. Это явление определяет сопротивление проводников при низких температурах. При Т>0 К атомы совершают тепловые колебания и возникает рассеяние электронов на тепловых колебаниях решетки. При повышении температуры это явление в основном обуславливает величину электрического сопротивления. Подвижность носителей заряда определяется средней длиной свободного пробега электронов.

Для практических целей определения удельного сопротивления чистого металла ρ часто используют формулу

где ρ0 – удельное сопротивление при комнатной температуре, a – положительный, слабо зависящий от температуры температурный коэффициент сопротивления металлов.

2. Температурная зависимость электропроводимости полупроводников и диэлектриков

В отличие от металлов, в полупроводниках и диэлектриках концентрация носителей и их подвижность зависят от температуры. На рис.1,а приведена зонная диаграмма собственного полупроводника (i — типа). Здесь изображены зависимости уровней энергии дна зоны проводимости Wc, верха валентной зоны Wv и уровня энергии Ферми WFi, а также зависимость концентрации электронов ni и дырок pi от температуры Т [2]. На рисунке по вертикальной оси отложена энергия W в электрон-вольтах, концентрация свободных носителей заряда ni, pi в одном кубическом сантиметре полупроводникового кристалла, а по горизонтальной – температура в градусах Кельвина. Уровни Wc, и Wv (непрерывные горизонтальные линии) не зависят от Т. Положение уровня Ферми

, (3)

где k = 0.86·10−4 эВ/К постоянная Больцмана, mn* и mp* ‑ эффективные массы электронов и дырок. Если mn* ≈ mp* и полупроводник широкозонный ΔW = Wc − Wv

1 эВ, то второй член при Т = 300 К имеет порядок 0.03 эВ и слабо изменяет положение уровня энергии Ферми. Вплоть до температур плавления вкладом второго члена можно пренебречь и считать WFi не зависящей от температуры (горизонтальная пунктирная линия на рис.1,а).

При Т = 0 К все электроны “связаны со своими атомами” и свободных носителей заряда нет. Полупроводник является идеальным изолятором. При повышении температуры начинаются тепловые колебания атомов кристаллической решетки. В результате электрон может получить энергию, достаточную для преодоления запрещенной зоны, и попасть в зону проводимости. Такой процесс называется тепловой генерацией пары электрон – дырка. Электрон совершает хаотические (броуновские) движения по всему объему полупроводника в межатом-ном пространстве. Дырки также хаотически перемещаются, но только по межатомным электронным связям. Через некоторое время τ электрон рекомбинирует с дыркой, но в другом месте полупроводника появится новая пара. Равновесные концентрации электронов и дырок ni, дырок pi равны и определяются:

где Nc =2(2πmn*kT/h2)3/2 – плотность квантовых состояний у дна зоны проводимости, Nv = 2(2πmp*kT/h2)3/2 – плотность квантовых состояний у верха валентной зоны, а h = 4.14·10−15 эВ·c ‑ постоянная Планка.

Экспоненциальная зависимость концентрации свободных носителей от температуры показана на рис.1,а жирной линией. В собственном полупроводнике концентрация свободных носителей заряда при всех температурах, вплоть до температуры плавления, существенно меньше концентрации валентных электронов, поэтому проводимость полупроводников на несколько порядков меньше проводимости металлов. Исключение составляют вырожденные полупроводники, у которых уровень Ферми располагается в зоне проводимости. Это может произойти при нагревании узкозонных полупроводников, у которых ΔW

В примесном полупроводнике n-типа уровень энергии Wd валентного электрона атома донорной примеси, который не участвует в образовании ковалентных связей с соседними атомами полупроводника, располагается в запрещенной зоне недалеко от дна зоны проводимости (рис.1,б). В этом случае при Т = 0 К уровни энергии валентной зоны и примеси заполнены электронами, в зоне проводимости электронов нет и уровень Ферми располагается посередине между Wd и Wс. Энергетический зазор ΔWn = Wc Wd Ti концентрация тепловых электронов и дырок становится больше концентрации примесных электронов и вклад собственной проводимости становится определяющим. При этом уровень Ферми асимптотически стремится к положению уровня Ферми в собственном полупроводнике WFi.

Аналогичные явления наблюдаются и в примесном полупроводнике р — типа (рис.1,в). В этом случае концентрация дырок в области малых температур также изменяется по экспоненциальному закону:

На длину свободного пробега и подвижность носителей заряда в основном влияют два физических фактора: рассеяние носителей заряда на тепловых колебаниях атомов кристаллической решетки и рассеяние на ионах примесей. При больших температурах преобладает рассеяние на тепловых колебаниях атомов, и с ростом температуры подвижность уменьшается. В диапазоне низких температур уменьшаются тепловые скорости движения электронов и увеличивается время воздействия электрического поля иона примеси на носители заряда, поэтому подвижность падает. Зависимость μ = f(T) для разных концентраций примесей N приведена на рис.2. При увеличении концентрации примесей в области низких температур μ уменьшается. В области высоких температур преобладает рассеяние на тепловых колебаниях атомов кристаллической решетки, и подвижность слабо зависит от концентрации примесей.

Читайте также:  Эта кислота прожигает металл

При большой напряженности электрического поля Е в полупроводнике происходит “разогрев” электронов: их дрейфовая скорость становится соизмеримой со скоростью хаотического теплового движения, что приводит к увеличению числа столкновений. При этом средняя длина свободного пробега уменьшается, а подвижность начиная с Екр

104 В/см падает (рис.3).

Для собственных полупроводников во всем интервале температур основной вклад в изменение проводимости вносит изменение концентрации носителей заряда:

где σ0 = q(μnNc +μрNv) – коэффициент, слабо зависящий от температуры.

Для примесных полупроводников сильная температурная зависимость проводимости наблюдается в области температур ионизации примесей Ts. При этом вклад тепловых электронов и дырок можно не учитывать и проводимость

где σ0n = nNc и σ0р = рNv – коэффициенты, слабо зависящие от температуры.

В области температур выше Ts и ниже Ti проводимость примесных полупроводников слабо зависит от температуры. В этой температурной области работают полупроводниковые диоды, транзисторы и интегральные микросхемы. При Т > Ti примесные полупроводники обычно не используют.

3. Параметры и характеристики терморезисторов

Терморезисторы могут изготавливаться из собственных полупроводников с малой шириной запрещенной зоны ΔW или из примесных полупроводников с высокой температурой активации примеси Ts.

Основной характеристикой терморезистора является температурная зависимость его сопротивления R. Она совпадает с температурной зависимостью удельного сопротивления полупроводника ρ, из которого изготовлен терморезистор. Во всем диапазоне рабочих температур эта зависимость достаточно точно определяется соотношением

где R¥ коэффициент, зависящий от исходного материала и конструкции терморезистора, B – коэффициент температурной чувствительности, характеризующий физические свойства материала терморезистора. Его можно найти экспериментально

К, (10)

измерив Rком – сопротивление терморезистора при комнатной температуре Тком и R1 – сопротивление при повышенной температуре Т1.

Рассчитав коэффициент температурной чувствительности, можно найти ширину запрещенной зоны собственного полупроводника из формул (9) и (7) с учетом, что R

или примесного полупроводника n и р — типа из формул (9) и (8)

где Bn, и Bр, ‑ коэффициенты температурной чувствительности полупроводников n— и р-типа.

Температурный коэффициент сопротивления терморезистора

К−1. (13)

ТК зависит от температуры, поэтому необходимо указывать температуру, при которой он получен (подстрочный индекс Т).

Зависимость ТКR=f(T) можно получить из (13) и (9):

Статическая вольт-амперная характеристика (ВАХ) терморезистора – это зависимость напряжения на терморезисторе от силы тока в условиях теплового равновесия между терморезистором и окружающей средой. На рис.4 показаны ВАХ терморезисторов с различными коэффициентами температурной чувствительности. Линейность ВАХ при малых токах и напряжениях связана с тем, что выделяемая в терморезисторе мощность недостаточна для существенного изменения его температуры. При увеличении тока, проходящего через терморезистор, выделяемая в нем мощность приводит к повышению температуры, росту концентрации свободных носителей заряда и уменьшению сопротивления. Линейность ВАХ нарушается. При дальнейшем увеличении тока и большой температурной чувствительности терморезистора может наблюдаться падающий участок ВАХ (участок с отрицательным дифференциальным сопротивлением).

Для каждой точки статической ВАХ терморезистора выполняется уравнение теплового баланса между мощностью электрического тока, выделяющейся в терморезисторе, и мощностью, которую он рассеивает в окружающую среду:

где Н [Вт/К]– коэффициент рассеяния терморезистора, численно равный мощности, которую нужно выделить в терморезисторе, чтобы его температура увеличилась на 1 К, Т – температура терморезистора, Tокр – температура окружающей среды.

Максимально допустимая температура терморезистора – это температура, при которой еще не происходит необратимых изменений параметров и характеристик терморезистора.

Максимально допустимая мощность рассеяния терморезистора Рmax – это мощность, при которой терморезистор, находящийся в спокойном воздухе при температуре 20ºС, разогревается при прохождении тока до максимально допустимой температуры.

Постоянная времени терморезистора t — это время, в течение которого превышение температуры терморезистора над температурой окружающей среды ΔT = (TTокр) уменьшится в е = 2,71 раз по отношению к начальной разности температур терморезистора и окружающей среды (T0−Tокр).

Основное количество терморезисторов, выпускаемых промышленностью, изготовлено из оксидных полупроводников, а именно из оксидов металлов переходной группы Периодической системы элементов (от титана до цинка). Электропроводность оксидных полупроводников с преобладающей ионной связью отличается от электропроводности классических ковалентных полупроводников. Для металлов переходной группы характерны незаполненные электронные оболочки и переменная валентность. В результате электропроводность таких оксидов связана с обменом электронами между соседними ионами (“прыжковый” механизм). Энергия, необходимая для стимулирования такого обмена, экспоненциально уменьшается с увеличением температуры. Температурная зависимость сопротивления оксидного терморезистора аппроксимируется уравнением (9) для классических ковалентных полупроводников. Коэффициент температурной чувствительности В (10) отражает интенсивность обмена между соседними ионами, а ΔW – энергию обменной связи (11).

Источник

Как зависит сопротивление от температуры

В своей практической деятельности каждый электрик встречается с разными условиями прохождения носителей зарядов в металлах, полупроводниках, газах и жидкостях. На величину тока влияет электрическое сопротивление, которое различным образом изменяется под влиянием окружающей среды.

Одним из таких факторов является температурное воздействие. Поскольку оно значительно изменяет условия протекания тока, то учитывается конструкторами в производстве электрооборудования. Электротехнический персонал, участвующий в обслуживании и эксплуатации электроустановок, обязан грамотно использовать эти особенности в практической работе.

Читайте также:  Фреза по металлу твердосплавная 12х25 мм хвостовик 6 мм практика 644 399

Влияние температуры на электрическое сопротивление металлов

В школьном курсе физики предлагается провести такой опыт: взять амперметр, батарейку, отрезок проволоки, соединительные провода и горелку. Вместо амперметра с батарейкой можно подключить омметр или использовать его режим в мультиметре.

Далее необходимо собрать электрическую схему, показанную на картинке и замерить величину тока в цепи. Его значение показано на шкале миллиамперметра стрелкой черного цвета.

Теперь поднесем пламя горелки к проволоке и станем ее нагревать. Если смотреть на амперметр, то будет видно, что стрелка станет перемещаться влево и достигнет положения, отмеченного красным цветом.

Результат опыта демонстрирует, что при нагревании металлов их проводимость уменьшается, а сопротивление возрастает.

Математическое обоснование этого явления приведено формулами прямо на картинке. В нижнем выражении хорошо видно, что электрическое сопротивление «R» металлического проводника прямо пропорционально его температуре «Т» и зависит еще от нескольких параметров.

Как нагрев металлов ограничивает электрический ток на практике

Ежедневно при включении освещения мы встречаемся с проявлением этого свойства у ламп накаливания. Проведем несложные измерения на лампочке с мощностью 60 ватт.

Самым простым омметром, питающемся от низковольтной батарейки 4,5 V, замерим сопротивление между контактами цоколя и увидим значение 59 Ом. Этой величиной обладает нить накала в холодном состоянии.

Вкрутим лампочку в патрон и через амперметр подключим к ней напряжение домашней сети 220 вольт. Стрелка амперметра покажет 0,273 ампера. По закону Ома для участка цепи определим сопротивление нити в нагретом состоянии. Оно составит 896 Ом и превысит предыдущее показание омметра в 15,2 раза.

Такое превышение предохраняет металл тела накала от перегорания и разрушения, обеспечивая его длительную работоспособность под напряжением.

Переходные процессы при включении

При работе нити накала на ней создается тепловой баланс между нагревом от проходящего электрического тока и отводом части тепла в окружающую среду. Но, на первоначальном этапе включения при подаче напряжения возникают переходные процессы, создающие бросок тока, который может привести к перегоранию нити.

Переходные процессы протекают за короткое время и вызваны тем, что скорость возрастания электрического сопротивления от нагрева металла не успевает за увеличением тока. После их окончания устанавливается рабочий режим.

Во время длительного свечения лампы постепенно толщина ее нити доходит до критического состояния, которое приводит к перегоранию. Чаще всего этот момент возникает при очередном новом включении.

Для продления ресурса лампы различными способами уменьшают этот бросок тока, используя:

1. устройства, обеспечивающие плавную подачу и снятие напряжения;

2. схемы последовательного подключения к нити накала резисторов, полупроводников или терморезисторов (термисторов).

Пример одного из способов ограничения пускового тока для автомобильных светильников показан на картинке ниже.

Здесь ток на лампочку подается после включения тумблера SA через предохранитель FU и ограничивается резистором R, у которого номинал подбирается так, чтобы бросок тока во время переходных процессов не превышал номинальное значение.

При нагреве нити накала ее сопротивление возрастает, что ведет к увеличению разности потенциалов на ее контактах и параллельно подключенной обмотке реле KL1. Когда напряжение достигнет величины уставки реле, то нормально открытый контакт KL1 замкнется и зашунтирует резистор. Через лампочку начнет протекать рабочий ток уже установившегося режима.

Влияние температуры металла на его электрическое сопротивление используется в работе измерительных приборов. Их называют термометрами сопротивления.

Их чувствительный элемент выполняют тонкой проволочкой из металла, сопротивление которой тщательно замерено при определенных температурах. Эту нить монтируют в корпусе со стабильными термическими свойствами и закрывают защитным чехлом. Созданная конструкция помещается в среду, температуру которой необходимо постоянно контролировать.

На выводы чувствительного элемента монтируются провода электрической схемы, которыми подключается цепь замера сопротивления. Его величина пересчитывается в значения температуры на основе ранее произведенной калибровки прибора.

Бареттер — стабилизатор тока

Так называют прибор, состоящий из стеклянного герметичного баллона с газообразным водородом и металлической проволочной спиралью из железа, вольфрама или платины. Эта конструкция по внешнему виду напоминает лампочку накаливания, но она обладает специфической вольт-амперной нелинейной характеристикой.

На ВАХ в определенном ее диапазоне образуется рабочая зона, которая не зависит от колебаний приложенного на тело накала напряжения. На этом участке бареттер хорошо компенсирует пульсации питания и работает в качестве стабилизатора тока на подключенной последовательно к нему нагрузке.

Работа бареттера основана на свойстве тепловой инерции тела накала, которая обеспечивается маленьким сечением нити и высокой теплопроводностью окружающего ее водорода. За счет этого при снижении напряжения на приборе ускоряется отвод тепла с его нити.

Это основное отличие бареттера от осветительных ламп накаливания, в которых для поддержания яркости свечения стремятся уменьшить конвективные потери тепла с нити.

В обычных условиях среды при охлаждении металлического проводника происходит уменьшение его электрического сопротивления.

При достижении критической температуры, близкой к нулю градусов по системе измерения Кельвина, происходит резкое падение сопротивления до нулевого значения. На правой картинке показана такая зависимость для ртути.

Это явление, названное сверхпроводимостью, считается перспективной областью для исследований с целью создания материалов, способных значительно снизить потери электроэнергии при ее передаче на огромные расстояния.

Однако, продолжающиеся изучения сверхпроводимости выявили ряд закономерностей, когда на электрическое сопротивление металла, находящегося в области критических температур, влияют другие факторы. В частности, при прохождении переменного тока с повышением частоты его колебаний возникает сопротивление, величина которого доходит до диапазона обычных значений у гармоник с периодом световых волн.

Читайте также:  Зигование листового металла что это

Влияние температуры на электрическое сопротивление/проводимость газов

Газы и обычный воздух являются диэлектриками и не проводят электрический ток. Для его образования нужны носители зарядов, которыми выступают ионы, образующиеся в результате воздействия внешних факторов.

Нагрев способен вызвать ионизацию и движение ионов от одного полюса среды к другому. Убедиться в этом можно на примере простого опыта. Возьмем то же оборудование, которым пользовались для определения влияния нагрева на сопротивление металлического проводника, только вместо проволоки к проводам подключим две металлические пластины, разделенные воздушным пространством.

Подсоединенный к схеме амперметр покажет отсутствие тока. Если между пластинами поместить пламя горелки, то стрелка прибора отклонится от нулевого значения и покажет величину проходящего через газовую среду тока.

Таким образом установили, что в газах при нагревании происходит ионизация, приводящая к движению электрически заряженных частиц и снижению сопротивления среды.

На значении тока сказывается мощность внешнего приложенного источника напряжения и разность потенциалов между его контактами. Она способна при больших значениях пробить изоляционный слой газов. Характерным проявлением подобного случая в природе является естественный разряд молнии во время грозы.

Примерный вид вольт-амперной характеристики протекания тока в газах показан на графике.

На начальном этапе под действие температуры и разности потенциалов наблюдается рост ионизации и прохождение тока примерно по линейному закону. Затем кривая приобретает горизонтальное направление, когда увеличение напряжения не вызывает рост тока.

Третий этап пробоя наступает тогда, когда высокая энергия приложенного поля так разгоняет ионы, что они начинают соударяться с нейтральными молекулами, массово образуя из них новые носители зарядов. В результате ток резко возрастает, образуя пробой диэлектрического слоя.

Практическое использование проводимости газов

Явление протекания тока через газы используется в радиоэлектронных лампах и люминесцентных светильниках.

Для этого внутри герметичного стеклянного баллона с инертным газом располагают два электрода:

У люминесцентной лампы они выполнены в виде нитей накала, которые разогреваются при включении для создания термоэлектронной эмиссии. Внутренняя поверхность колбы покрыта слоем люминофора. Он излучает видимый нами спектр света, образующийся при инфракрасном облучении, исходящем от паров ртути, бомбардируемых потоком электронов.

Ток газового разряда возникает при приложении напряжения определенной величины между электродами, расположенными по разным концам колбы.

Когда одна из нитей накала перегорит, то на этом электроде нарушится электронная эмиссия и лампа гореть не будет. Однако, если увеличить разность потенциалов между катодом и анодом, то снова возникнет газовый разряд внутри колбы и свечение люминофора возобновится.

Это позволяет использовать светодиодные колбы с нарушенными нитями накала и продлять их ресурс работы. Только следует учитывать, что при этом в несколько раз надо поднять на ней напряжение, А это значительно повышает потребляемую мощность и риски безопасного использования.

Влияние температуры на электрическое сопротивление жидкостей

Прохождение тока в жидкостях создается в основном за счет движения катионов и анионов под действием приложенного извне электрического поля. Лишь незначительную часть проводимости обеспечивают электроны.

Влияние температуры на величину электрического сопротивления жидкого электролита описывается формулой, приведенной на картинке. Поскольку в ней значение температурного коэффициента α всегда отрицательно, то с увеличением нагрева проводимость возрастает, а сопротивление падает так, как показано на графике.

Это явление необходимо учитывать при зарядке жидкостных автомобильных (и не только) аккумуляторных батарей.

Влияние температуры на электрическое сопротивление полупроводников

Изменение свойств полупроводниковых материалов под воздействием температуры позволило использовать их в качестве:

Таким названием обозначают полупроводниковые приборы, изменяющие свое электрическое сопротивление под влиянием тепла. Их температурный коэффициент сопротивления (ТКС) значительно выше, чем у металлов.

Величина ТКС у полупроводников может иметь положительное или отрицательное значение. По этому параметру их разделяют на позитивные «РТС» и негативные «NTC» термисторы. Они обладают различными характеристиками.

Для работы терморезистора выбирают одну из точек на его вольт-амперной характеристике:

линейный участок применяют для контроля температуры либо компенсации изменяющихся токов или напряжений;

нисходящая ветвь ВАХ у элементов с ТКС

Применение релейного терморезистора удобно при контроле или измерениях процессов электромагнитных излучений, происходящих на сверхвысоких частотах. Это обеспечило их использование в системах:

1. контроля тепла;

2. пожарной сигнализации;

3. регулирования расхода сыпучих сред и жидкостей.

Кремниевые терморезисторы с маленьким ТКС>0 используют в системах охлаждения и стабилизации температуры транзисторов.

Эти полупроводники работают на основе явления Зеебека: при нагреве спаянного места двух разрозненных металлов на стыке замкнутой цепи возникает ЭДС. Таким способом они превращают тепловую энергию в электричество.

Конструкцию из двух таких элементов называют термопарой. Ее КПД лежит в пределах 7÷10%.

Термоэлементы используют в измерителях температур цифровых вычислительных устройств, требующих миниатюрные габариты и высокую точность показаний, а также в качестве маломощных источников тока.

Полупроводниковые нагреватели и холодильники

Они работают за счет обратного использования термоэлементов, через которые пропускают электрический ток. При этом на одном месте спая происходит его нагрев, а на противоположном — охлаждение.

Полупроводниковые спаи на основе селена, висмута, сурьмы, теллура позволяют обеспечить разность температур в термоэлементе до 60 градусов. Это позволило создать конструкцию холодильного шкафа из полупроводников с температурой в камере охлаждения до -16 градусов.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Поделиться с друзьями
Металл