Почему щелочноземельные металлы хранят под слоем керосина



§ 15. Бериллий, магний и щёлочноземельные металлы

Строение и свойства атомов. Бериллий Be, магний Mg и щёлочноземельные металлы: кальций Са, стронций Sr, барий Ва и радий Ra — элементы главной подгруппы II группы (НА группы) Периодической системы Д. И. Менделеева. Атомы этих элементов содержат на внешнем энергетическом уровне два электрона, которые они отдают при химических взаимодействиях, и поэтому являются сильнейшими восстановителями. Во всех соединениях они имеют степень окисления +2. С увеличением порядкового номера сверху вниз в подгруппе восстановительные свойства элементов усиливаются, что связано с увеличением радиусов их атомов.

Радий — радиоактивный элемент, содержание его в природе невелико.

Бериллий, магний и щёлочноземельные металлы — простые вещества. Лёгкие серебристо-белые металлы, стронций имеет золотистый оттенок. Он значительно твёрже бария, барий же по мягкости напоминает свинец.

На воздухе при обычной температуре поверхность бериллия и магния покрывается защитной оксидной плёнкой. Щёлочноземельные металлы взаимодействуют с кислородом воздуха более активно, поэтому их хранят под слоем керосина или в запаянных сосудах, как и щелочные металлы.

При нагревании на воздухе все рассматриваемые металлы (обозначим их М) энергично сгорают с образованием оксидов:

Реакция сжигания магния сопровождается ослепительной вспышкой, раньше её применяли при фотографировании объектов в тёмных помещениях. В настоящее время используют электрическую вспышку.

Бериллий, магний и все щёлочноземельные металлы взаимодействуют при нагревании с неметаллами — хлором, серой, азотом и т. д., образуя соответственно хлориды, сульфиды и нитриды:

При высоких температурах металлы главной подгруппы II группы (IIА группы) Периодической системы Д. И. Менделеева окисляются водородом до гидридов:

Гидриды — это твёрдые солеподобные соединения металлов с водородом, похожие на галогениды — соединения металлов с галогенами. Теперь, очевидно, вам стало понятно, почему водород находится и в главной подгруппе VII группы (VIIA группы).

Из всех металлов главной подгруппы II группы (ИА группы) Периодической системы Д. И. Менделеева только бериллий практически не взаимодействует с водой (препятствует защитная плёнка на его поверхности), магний реагирует с ней медленно, остальные металлы бурно взаимодействуют с водой при обычных условиях (рис. 54):

Подобно алюминию, магний и кальций способны восстанавливать редкие металлы — ниобий, тантал, молибден, вольфрам, титан и др. — из их оксидов, например:

Такие способы получения металлов по аналогии с алюминотермией называют магниетермией и калъциетермией.

Магний и кальций применяют для производства редких металлов и лёгких сплавов. Например, магний входит в состав дюралюминия, а кальций — один из компонентов свинцовых сплавов, необходимых для изготовления подшипников и оболочек кабелей.

Соединения бериллия, магния и щёлочноземельных металлов. В природе щёлочноземельные металлы, как и щелочные металлы, находятся только в форме соединений вследствие своей высокой химической активности.

Оксиды МО — твёрдые белые тугоплавкие вещества, устойчивые к воздействию высоких температур. Проявляют основные свойства, кроме оксида бериллия, имеющего амфотерный характер.

Оксид магния малоактивен в реакции с водой, все остальные оксиды очень бурно взаимодействуют с ней:

Оксиды получают обжигом карбонатов:

В технике оксид кальция СаО называют негашёной известью, a MgO — жжёной магнезией. Оба этих оксида используют в производстве строительных материалов.

Гидроксиды щёлочноземельных металлов относятся к щелочам. Их растворимость в воде увеличивается в ряду Са(ОН)2→Sr(OH)2→Ва(ОН)2. Эти гидроксиды получают взаимодействием соответствующего оксида с водой.

Реакция оксида кальция с водой сопровождается выделением большого количества теплоты и называется гашением извести (рис. 55), а образующийся Са(ОН)2гашёной известью:

Прозрачный раствор гидроксида кальция называют известковой водой, а белую взвесь Са(ОН)2 в воде — известковым молоком. Гашёную известь широко используют в строительстве. Известковое молоко применяют в сахарной промышленности для очистки свекловичного сока.

Соли бериллия, магния и щёлочноземельных металлов получают взаимодействием их с кислотами. Галогениды (фториды, хлориды, бромиды и иодиды) этих металлов — белые кристаллические вещества, большинство из них растворимо в воде. Из сульфатов хорошо растворимы в воде только сульфаты бериллия и магния. Растворимость сульфатов элементов главной подгруппы II группы Периодической системы Д. И. Менделеева уменьшается от BeSO4 к BaSO4. Карбонаты этих металлов малорастворимы или нерастворимы в воде.

Читайте также:  Как можно удалить ржавчину с металла

Сульфиды щёлочноземельных металлов, содержащие в малых количествах примеси тяжёлых металлов, после предварительного освещения начинают светиться различными цветами — красным, оранжевым, голубым, зелёным. Они входят в состав специальных светящихся красок, которые называют фосфорами.

Их используют для изготовления светящихся дорожных знаков, циферблатов часов и других изделий.

Рассмотрим наиболее важные соединения элементов главной подгруппы II группы (IIА группы) Периодической системы Д. И. Менделеева.

СаСO3карбонат кальция — одно из самых распространённых на Земле соединений. Вам хорошо известны такие содержащие его минералы, как мел, мрамор, известняк (рис. 56).

Мрамор — это минерал скульпторов, архитекторов и облицовщиков. Из него создавали свои прекрасные творения многие скульпторы (рис. 57). Стены всемирно известного индийского мавзолея Тадж-Махал выложены из мрамора (рис. 58), им же облицованы многие станции московского метро (рис. 59).

Однако самый важный из этих минералов — известняк, без которого не обходится ни одно строительство. Во-первых, он сам является прекрасным строительным камнем (вспомните знаменитые одесские катакомбы — бывшие каменоломни, в которых добывали камень для строительства города), во-вторых, это сырьё для получения других материалов: цемента, гашёной и негашёной извести, стекла и др.

Известковой щебёнкой укрепляют дороги, а порошком уменьшают кислотность почв.

Природный мел представляет собой остатки раковин древних животных. Один из примеров его использования — это школьные мелки, зубные пасты. Мел применяют в производстве бумаги, резины, побелки.

MgCO3карбонат магния, необходим в производстве стекла, цемента, кирпича, а также в металлургии для перевода пустой породы, т. е. не содержащей соединения металла, в шлак.

CaSO4сульфат кальция, встречается в природе в виде минерала гипса CaSO4 • 2Н2O, представляющего собой кристаллогидрат. Используют в строительстве, в медицине для наложения фиксирующих гипсовых повязок, получения слепков (рис. 60). Для этого применяют

полуводный гипс 2CaSO4 • Н2O — алебастр, который при взаимодействии с водой образует двуводный гипс:

Эта реакция идёт с выделением теплоты.

MgSO4сульфат магния, известный под названием горькая, или английская, соль, используют в медицине в качестве слабительного средства. Содержится в морской воде и придаёт ей горький вкус.

BaSO4сульфат бария, благодаря нерастворимости и способности задерживать рентгеновские лучи применяют в рентгенодиагностике («баритовая каша») для диагностики заболеваний желудочно-кишечного тракта (рис. 61).

Са3(РO4)2фосфат кальция, входит в состав фосфоритов (горная порода) и апатитов (минерал), а также в состав костей и зубов. В организме взрослого человека содержится более 1 кг кальция в виде соединения Са3(РO4)2.

Кальций имеет важное значение для живых организмов, это материал для постройки костного скелета. Он играет существенную роль в процессах жизнедеятельности: ионы кальция необходимы для работы сердца, участвуют в процессах свёртывания крови.

На долю кальция приходится более 1,5% массы тела человека, 98% кальция содержится в костях. Однако кальций необходим не только при формировании скелета, но и для работы нервной системы.

Человек должен получать в день 1,5 г кальция. Наибольшие количества кальция содержатся в сыре, твороге, петрушке, салате.

Магний также является необходимым биоэлементом, играя роль стимулятора обмена веществ, содержится в печени, костях, крови, нервной ткани и мозге. Магния в человеческом организме намного меньше, чем кальция, — всего около 40 г.

Магний входит в состав хлорофилла, а следовательно, участвует в процессах фотосинтеза. Без хлорофилла не было бы жизни, а без магния — хлорофилла, ведь в нём содержится 2% этого элемента.

Соли щёлочноземельных металлов окрашивают пламя в яркие цвета, поэтому эти соединения добавляют в составы для фейерверков (рис. 62).

Открытие магния и кальция. Магний был впервые получен Г. Дэви в 1808 г. из белой магнезии — минерала, найденного близ греческого города Магнезия. По названию минерала и дали название простому веществу и химическому элементу.

Читайте также:  Виды обработки металла давлением прокатка

Полученный Г. Дэви металл был загрязнён примесями, а чистый магний получил француз А. Бюсси в 1829 г.

Кальций был впервые получен также Г. Дэви в 1808 г. Название элемента происходит от латинского слова кальс, что означает «известь, мягкий камень».

1. Обратитесь к электронному приложению. Изучите материал урока и выполните предложенные задания.

2. Найдите в Интернете электронные адреса, которые могут служить дополнительными источниками, раскрывающими содержание ключевых слов и словосочетаний параграфа. Предложите учителю свою помощь в подготовке нового урока — сделайте сообщение по ключевым словам и слово-сочетаниям следующего параграфа.

1. Массовая доля костей человека составляет 20% от общей массы организма. На долю фосфата кальция, входящего в состав костей, приходится также 20% от массы костей. Зная массу своего тела, рассчитайте, сколько килограммов фосфата кальция содержится в вашем организме. Сколько килограммов кальция содержится в нём?

2. Вспомните из курса анатомии, что такое гемофилия. Почему гемофиликам вводят при кровотечениях раствор хлорида кальция?

3. Вычислите количество вещества гашёной извести, которое может быть получено из 2 т известняка, содержащего 25% примесей.

4. Напишите уравнения реакций, с помощью которых можно осуществить следующие превращения:

Какие металлы главной подгруппы II группы (IIА группы) Периодической системы Д. И. Менделеева могут быть использованы для этих превращений, а какие — нет? Почему?

5. Напишите уравнения реакций для осуществления превращений:

Уравнение последней реакции запишите также в ионной форме.

6. Используя в качестве примера приведённое в предыдущем параграфе сочинение ученицы, напишите своё сочинение о химическом веществе или процессе, посвящённое химии щёлочноземельных металлов.

7. Почему в медицине для гипсовых повязок используют не гипс CaSO4 • 2Н2O, а алебастр 2CaSO4 • Н2O? Какой процесс происходит при наложении такой повязки?

  • Бериллий, магний и щёлочноземельные металлы. Ответы

Источник

§ 13. Коррозия металлов

«Ржа ест железо» — гласит русская народная поговорка. Ржавчина, которая появляется на поверхности стальных и чугунных изделий, — это яркий пример коррозии.

У поэта В. Шефнера есть очень образные строчки:

Ежегодно из-за коррозии теряется около четверти всего произведённого в мире железа. Однако не только потеря металлов, но и порча изготовленных из них изделий обходится очень дорого. Затраты на ремонт или на замену деталей судов, автомобилей, аппаратуры химических производств, приборов и коммуникаций во много раз превышают стоимость металла, из которого они изготовлены.

Коррозия вызывает серьёзные экологические последствия. Утечка газа, нефти и других опасных химических продуктов из разрушенных коррозией трубопроводов приводит к загрязнению окружающей среды, что отрицательно влияет на здоровье и жизнь людей. Понятно, почему на защиту металлов и сплавов от коррозии тратят большие средства.

Коррозию металлов и сплавов (их окисление) вызывают такие компоненты окружающей среды, как вода, кислород, оксиды углерода и серы, содержащиеся в воздухе, водные растворы солей (морская вода, грунтовые воды). Эти компоненты непосредственно окисляют металлы — происходит химическая коррозия.

Чаще всего коррозии подвергаются изделия из железа. Особенно сильно корродирует металл во влажном воздухе и при соприкосновении с водой (рис. 43). Упрощённо этот процесс можно выразить следующим уравнением химической реакции:

Химически чистое железо почти не корродирует, а техническое железо, которое содержит различные примеси, например в чугунах и сталях, ржавеет. Следовательно, одной из причин возникновения коррозии является наличие примесей в металле, т. е. его неоднородность.

Сущность процесса коррозии для этого случая покажем на следующем примере. Если два различных металла, находящихся в контакте между собой, опустить в водный раствор электролита (в реальных условиях это, например, грунтовые воды, сконденсированная влага из атмосферы), то металл более активный, расположенный в электрохимическом ряду напряжений левее, будет разрушаться, предохраняя менее активный металл от коррозии.

Например, при контакте железа с медью в водной среде железо, как более активный металл, постепенно корродирует, переходя в воду в виде ионов железа (рис. 44, а).

Читайте также:  Обработка металла после сварки авто

Электроны, высвободившиеся из атомов железа, перейдут к меди и на её поверхности соединятся с ионами водорода, выделившимися из компонентов водной среды (например, серной или других кислот; вам, очевидно, известно выражение «кислотные дожди»). Этот электрохимический процесс можно представить так:

И наоборот, при контакте железа с более активным цинком последний, разрушаясь, защищает железо от коррозии (рис. 44, б).

Для борьбы с коррозией существует много способов. Назовём некоторые из них.

1. Нанесение защитных покрытий на поверхности предохраняемого от коррозии металла. Для этого часто используют масляные краски, эмали, лаки (рис. 45). Эти неметаллические покрытия дешёвые, но обычно недолговечные. Раз в два года, а иногда и чаще их требуется обновлять. Так, например, красят Эйфелеву башню в Париже.

Предохраняемый металл можно покрыть слоем другого металла: золота, серебра, хрома, никеля, олова, цинка и др.

Один из самых старых способов — это лужение, или покрытие железного листа слоем олова. Такое железо называют белой жестью.

Один из самых старых способов — это лужение, или покрытие железного листа слоем олова. Такое железо называют белой жестью.

2. Использование нержавеющих сталей, содержащих специальные добавки. Например, «нержавейка», из которой изготавливают столовые приборы, содержит до 12% хрома и до 10% никеля. Лёгкие нержавеющие сплавы включают алюминий или титан. Всякий, кто был во Всероссийском выставочном центре, видел перед входом обелиск «Покорителям космоса», облицованный пластинками из титанового сплава (рис. 46). На его блестящей поверхности нет ни одного пятнышка ржавчины.

3. Введение в рабочую среду, где находятся металлические детали, веществ, которые в десятки и сотни раз уменьшают агрессивность среды. Такие вещества называют ингибиторами коррозии.

Ингибиторы коррозии вводят в замкнутые системы охлаждения, в нефтепродукты и даже впрыскивают в газопроводы для снижения коррозии труб изнутри. Для предотвращения коррозии железа в серной кислоте к ней добавляют в качестве ингибитора азотную кислоту.

4. Создание контакта с более активным металлом — протектором. Например, для защиты стальных корпусов морских судов обычно используют цинк (рис. 47). На суше металлические конструкции линии электропередачи (ЛЭП) и трубопроводов соединяют с листом или куском более активного металла. С этой же целью к деталям конструкции мостов приваривают куски цинка.

1. Обратитесь к электронному приложению. Изучите материал урока и выполните предложенные задания.

2. Найдите в Интернете электронные адреса, которые могут служить дополнительными источниками, раскрывающими содержание ключевых слов и словосочетаний параграфа. Предложите учителю свою помощь в подготовке нового урока — сделайте сообщение по ключевым словам и слово-сочетаниям следующего параграфа.

1. Медь на воздухе покрывается тонким слоем оксида, придающим ей тёмную окраску, но во влажном воздухе и в присутствии углекислого газа на её поверхности образуются соединения зелёного цвета ((СиOН)2СO3). Напишите уравнения реакций коррозии меди.

2. Щелочные и щёлочноземельные металлы хранят под слоем керосина для предотвращения контакта с воздухом, так как они интенсивно взаимодействуют с составными частями воздуха. Напишите уравнения возможных реакций, сопровождающих коррозию этих металлов.

3. Что такое ингибиторы коррозии? Что такое протекторы? Чем отличается механизм их действия при защите металлов от коррозии?

4. Лужёное железо, покрытое защитной оловянной плёнкой, поцарапали. Что будет происходить с изделием?

5. О каком материале строка В. В. Маяковского: «По крыше выложили жесть. » ?

6. В начале XX в. из нью-йоркского порта вышла в открытый океан красавица яхта. Её владелец, американский миллионер, не пожалел денег, чтобы удивить свет. Корпус яхты был сделан из очень дорогого в то время алюминия, листы которого скреплялись медными заклёпками. Это было красиво — сверкающий серебристым блеском корабль, усеянный золотистыми головками заклёпок! Однако через несколько дней обшивка корпуса начала расходиться и яхта быстро пошла ко дну. Почему?

  • Коррозия металлов. Ответы

Источник

Поделиться с друзьями
Металл
Adblock
detector