Почему серу называют отцом металлов

Как понять «сера — их отец», «ртуть — родная мать»?

Семь металлов создал свет

По числу семи планет:

Медь, железо, серебро.

Дал нам Космос на добро.

Злато, олово, свинец.

Сын мой, сера — их отец.

А еще ты должен знать:

Всем им ртуть — родная мать.

Как понимать приведенные в этом стихотворении образные выражения: «сера — их отец» и «ртуть — родная мать»?

Дополнение к ответу Рафаила. Египетские и греческие алхимики считали, что ртуть является главной составной частью любого металла. При множестве операций со ртутью, направленных на отыскания способа получения золота, ртуть частично загрязнялась золотом. И при перегонке такой ртути с последующим прокаливанием оставался маленький королек ртути. Что также убеждало алхимиков, что это золото было «рождено» ртутью. Отсюда и ртуть-мать всех перечисленных металлов. Ну, а раз у металлов есть мать, то должен быть и отец. И так как большинство металлов не драгоценные, то виной этому, по мнению алхимиков, — сера. Соединяясь с ртутью в разных соотношениях, сера и дает «медь, железо, серебро» и другие металлы. На рисунке — Ребис (гермафродит), соединение серы и ртути. Он и порождает все семь металлы, символы которых окружают фигуру. Интересно, что у индийских алхимиков сера и ртуть ме­ня­ют­ся ро­ля­ми. Кстати, в немецком языке сера (Schwefel) — мужского рода, а ртуть (Quecksilber) — среднего. А во французском мужского рода и сера (soufre), и ртуть (mercure). То же и в итальянском.

Ранее, давно совсем, алхимики считали, что из ртути и серы можно получить все металлы, остальные, олово/железо/серебро­ /медь и многие другие, поэтому так и надо понимать эти слова («сера — их отец», «ртуть — родная мать»).

Раньше эти вещества считали очень ценными и важными, как «отец» и «мать» среди веществ в химии.

В древности, люди ещё не знали, как устроено вещество, из чего? Но всё же понимали, что все вещества устроены единообразно, поэтому всегда стремились свести все вещества к некоторым простейшим. В какие-то годы считалось, что начало всему дали четыре стихии: земля, вода, воздух, огонь. А в какой-то период считали, что все вещества можно свести (получить из) к сере и ртути. Видимо, приведённые строки появились именно в этот период (ещё задолго до алхимиков).

Оба варианта допустимы по старым номенклатурам, но не соответствуют правилам ИЮПАК. По современным правилам ИЮПАК гидроксид-анион перечисляется с другими анионами в алфавитном порядке (отделяясь в русском языке дефисами) и Al(OH)2Cl правильно будет называться дигидроксид-хлорид алюминия.

Это вещество в парфюмерии часто неправильно называют гидрохлоридом алюминия.

Уравнение реакции:X₂YCl₂ + 2HCl = 2XCl₂ + H₂Y

Соотношение относительных атомных масс: Aᵣ(X):Aᵣ(Y)=3:2

Отсюда: Aᵣ(X)=3m, Aᵣ(Y)=2m.

54*(6m+142)=76(8m+71­ ). 54*6m+54*142=76*8m+7­ 6*71. 324m+7668=608m+5396.

608m-324m=7668-5396. 284m=2272. m=8.

Aᵣ(X)=3m. Aᵣ(X)=3*8=24. Aᵣ(Y)=2m. Aᵣ(Y)=2*8=16.

Значить Х — магний, Y — кислород.

Тогда уравнение реакции пишутся так:Mg₂OCl₂ + 2HCl = 2MgCl₂ + H₂O

Здесь находим массу воды

Если речь идёт о простом уровнении химического процесса, без подвоха, можно предположить, что формула будет следующей: 2NaOH+Zn+2H²O—Na2[Zn(OH)4]+H. Её можно найти в учебнике по химии или в интернете. Растворение металла в щелочи с выделением водорода.

В химии элементы делятся на металлы и неметаллы исходя из кислотно-основных свойств их оксидов. Оксиды и гидроксиды типичных металлов обладают выраженными основными свойствами, а типичных неметаллов — кислотными. Существуют и промежуточные случаи — с одной стороны это элементы, образующие амфотерные оксиды (алюминий), с другой — элементы, способные существовать во множестве степеней окисления, для которых характерно, что в высших степенях окисления они ведут себя, как типичные неметаллы, а в низших — как типичные металлы (многие переходные металлы).

В физике же металл — это твердое (или жидкое) вещество с металлическими связями между атомами, с высокой концентрацией и подвижностью свободных электронов. Для металлов характерна зонная структура с частично заполненной разрешенной зоной (это может быть валентная зона либо перекрывающиеся валентная зона и зона проводимости) с уровнем Ферми, находящимся в пределах разрешенной зоны. Для металлов характерны высокая электро- и теплопроводность, падающие с ростом температуры, у них отсутствует фотопроводимость, а электропроводность снижается при введении примесей.

Любопытно, что некоторые типичные металлы с химической точки зрения не являются металлами с физической. Так, висмут — типичный металл, проявляющий амфотерные свойства только в достаточно жестких условиях. Однако простое вещество висмут обладает полупроводниковыми свойствами, то есть не является металлом с физической точки зрения. Обратный пример — алюминий. Он, конечно, не является неметаллом, но основные свойства у него довольно слабые, зато хорошо выражены кислотные. А вот как простое вещество он — типичный металл.

Как это ничего не дано. Читаем внимательно:

Вспоминаем что такое хлорат калия, это KClO3. Открываем учебник (в данном случае «Википедию») и находим:

Теперь ясно, что хлорат калия разлагается с образованием хлорида калия KCl и кислорода.

Очевидно, что кислород (поскольку он — газ) — улетучился, и осталась смесь KCl и недоразложившегося KClO3 и массовая доля элемента хлора в ней составляет 40 %.

Вычисляем массовые доли Cl в этих соединениях.

В KCl 35,45/(39,10+35,45)=­ 0,4755.

В 2KClO3 35,45/(9,10+35,45+3*­ 16,00)=0,2893.

Пусть доля разложившегося хлората калия равна х.

Тогда можем составить уравнение баланса по хлору:

Решая его находим: х=0,5945, или иначе 59,45 %.

Источник

Почему серу называют отцом металлов, а ртуть матерью?

Видимо, потому что в природе многие металлы встречаются в виде сульфидов, а ртуть, благодаря своей способности образовывать амальгаму, с древнейших времен использовалась для отделения металла от пустой породы.

Я бы сказал, что дети находятся под крылом РОДИТЕЛЕЙ, ОБОИХ, вне зависимости от пола. Просто мама уделяет бОльшее внимание воспитанию детей, чем отец (это в подавляющем большинстве случаев).

Родители показывают ребенку, как они живут и учат жить так же.

Если это успешные люди — ребенок тоже становится успешным.

Если это отбросы общества — зачастую ребенок тоже таким становится. Кроме тех случаев, когда внутреннее тяготение его тянет к лучшему образу жизни, который он видел, скажем, у соседей. И такой ребенок понимает, что образ жизни его родителей совсем неправильный, что чтобы добиться лучшей жизни, ему нужно менять образ своей жизни, своё мышление, учиться, работать и т.д. и т.п., чтобы выбраться из нищеты, в которой абсолютно комфортно чувствуют себя его родители.

Вот тогда и меняет свою «прошивку» человек, который хочет изменить свою жизнь.

Искусственно точно ничего повышать не надо! Ну «прикроет» мамка никчемному папку раз, ну другой. А что дальше, если папаша по жизни никакого уважения не заслуживает и не пытается? Детишки вырастут и сами все поймут. И как они будут вспоминать свое детство? Как обман матери? Завышать не нужно, но и усугублять, говоря фразы вроде «дети, вот ваш отец козел безрогий» тоже не нужно. Быть нейтральной в такой ситуации, мне кажется оптимальный вариант для мамы. Пусть у детей формируется свое независимое мнение, исходя из их внутренних ощущений.

А наоборот вопрос не ставится, на мой взгляд, потому, что авторитет матери для каждого ребенка безусловный (до определенного возраста). Потому что мать все равно ближе к детям, нежели отец.

Дети женщины от разных мужчин не считаются сводными, их называют одноутробными (единоутробными) или неполнородными.

Сводными братьями/сёстрами называются в случае, когда заключающая брак пара уже имеет прежде рождённых детей (добрачных или в предыдущем браке). Итак, сводные братья/сёстры по крови не родственники, называется это некровное родство или свойственные отношения. Сводные братья/сёстры могут заключать брак.

Однако, любопытный момент родословия, когда появляются в новой семье совместные общие дети, ситуация немного другая. Появившийся новый рождённый ребёнок является старшим детям кому одноутробным, единоутробным (общая мама), кому однокровным, единокровным (общий папа).

Сводные дети (далее дети этих детей), становятся кровными родственниками через потомков.

Чтобы стать для сына хорошим отцом, нужно стать ему другом. А для этого нужно проводить с ним как можно больше времени, понимать его интересы, помогать решать возникшие проблемы и ни в коем случае не исполнять любой его каприз. Иногда, если ребенок провинился, нужно его строго наказывать, не обязательно физически, это может быть запрет играть в компьютерные игры, или какие-либо другие ограничения, но самое главное, чтобы ребенок точно понимал за что его наказывают и раскаивался в содеянном. Очень хорошие результаты дают совместные занятия спортом, катание на лыжах или на велосипедах, спортивные игры и другое совместное времяпровождение. И что еще очень важно, это проводить отпуск вместе с детьми и тогда вы получите высшую награду, когда ваш сын скажет: «Папа ты мой самый лучший друг!»

Читайте также:  Чем опасен металл для мрт

Источник

Сера — «мать» всех металлов

Так считали арабские алхимики. Согласно их ртутно-серной теории, этот элемент входит в состав всех металлов.

Сера известна благодаря своему характерному запаху, который напоминает амбре испорченных куриных яиц. Это обусловлено нахождением в них сероводорода. Элемент входит в десятку самых распространенных на планете и используется человеком с древнейших времен.

Интересно, что в чистом виде сера совсем не имеет запаха, а приобретает его, находясь в соединениях. Они называются меркаптаны.

Этимология названия

Однозначной версии происхождения названия нет. В «Этимологическом словаре русского языка» Фасмера сказано, что слово восходит к латинскому «сera» — «воск», либо к «serum» — «сыворотка». В переводе с арабского «суфра» означает «желтый». С санскрита «шулбари» переводится как «враг меди». Этот вариант интригует, ведь сера, на самом деле, вступает в активную реакцию с медью.

Ее содержание составляет 3% от всей массы нашей планеты.

Для фумигации с древних времен

Ею окуривали дома, чтобы убить находящуюся в них инфекцию. Пары серы уничтожали бактерии, вызывающие оспу, дифтерию и корь. Примечательно, что и сейчас на рынке существуют серные шашки. Их используют в основном для антибактериальной обработки помещений, таких как подвалы, погребы и теплицы.

Горячие источники

Они особенно ценятся людьми за целебные свойства. Города в штате Колорадо (США) стали возникать после того, как белыми людьми были обнаружены серные источники, которые на тот момент уже многие столетия использовали индейцы.

В организме человека

Сложно переоценить роль этого элемента для здоровья человека. Сера отвечает за стабильную работу нервных клеток, оптимизацию уровня сахара в крови, а также обладает противовоспалительным действием.

Ее запас мы можем получить из многих привычных продуктов питания. Например, из молочных продуктов, репчатого лука, бобовых, злаковых и круп, брокколи, яблок и рыбы.

Неудивительно, что известно немного случаев нехватки этого элемента в отдельно взятом организме, ведь сера практически ежедневно поступает в наш организм вместе с этой пищей.

Применение

Около 90 % от объема добычи этого минерала идет на изготовление серной кислоты. Однако оставшихся 10 % вполне хватает, чтобы у человечества не возникало нужды в этом элементе.

Сфера ее применения разнообразна:

  • производство серной кислоты;
  • в резинотехнической промышленности;
  • в целлюлозно-бумажной промышленности;
  • для производства пороха и пиротехнических изделий;
  • для производства красителей в химической индустрии;
  • для получения сусального золота;
  • в медицине;
  • для борьбы с вредителями в сельском хозяйстве, а также в качестве удобрений.

Источник

Почему серу называют отцом металлов

Сера — элемент 16-й группы (по устаревшей классификации — главной подгруппы VI группы), третьего периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 16. Проявляет неметаллические свойства. Обозначается символом S (лат. sulfur ). В водородных и кислородных соединениях находится в составе различных ионов, образует многие кислоты и соли. Многие серосодержащие соли малорастворимы в воде.

Название, символ, номер Сера / Sulfur (S), 16 Атомная масса
(молярная масса) [32,059; 32,076]а. е. м. (г/моль) Электронная конфигурация [Ne] 3s 2 3p 4 Радиус атома 127 пм Ковалентный радиус 102 пм Радиус иона 30 (+6e) 184 (−2e) пм Электроотрицательность 2,58 (шкала Полинга) Электродный потенциал Степени окисления +6, +4, +2, +1, 0, −1, −2 Энергия ионизации
(первый электрон) 999,0 (10,35) кДж/моль (эВ) Плотность (при н. у.) 2,070 г/см³ Температура плавления 386 К (112,85 °С) Температура кипения 717,824 К (444,67 °С) Уд. теплота плавления 1,23 кДж/моль Уд. теплота испарения 10,5 кДж/моль Молярная теплоёмкость 22,61 Дж/(K·моль) Молярный объём 15,5 см³/моль Структура решётки орторомбическая Параметры решётки a = 10,437, b = 12,845, c = 24,369 Å Теплопроводность (300 K) 0,27 Вт/(м·К) Номер CAS 7704-34-9 ГОСТ ГОСТ 127.1-93 ГОСТ 127.4-93 ГОСТ 127.5-93 ГОСТ Р 56249-2014

Содержание

  • 1 Изотопы
  • 2 История и происхождение названия
    • 2.1 Происхождение названия
    • 2.2 История открытия
  • 3 Сера в природе
    • 3.1 Природные минералы серы
  • 4 Получение
    • 4.1 Производители
    • 4.2 Товарные формы
  • 5 Применение
  • 6 Свойства
    • 6.1 Физические свойства
    • 6.2 Фазовая диаграмма серы
    • 6.3 Химические свойства
  • 7 Биологическая роль
    • 7.1 Биологической действие
  • 8 Пожароопасные свойства серы
    • 8.1 Пожары на складах серы
  • 9 Юникод

Изотопы

Природная Сера состоит из четырёх стабильных изотопов:

32 S (95,02 %), 33 S (0,75 %), 34 S (4,21 %), 36 S (0,02 %).

Получены также искусственные радиоактивные изотопы

История и происхождение названия

Происхождение названия

Слово «сера», известное в древнерусском языке с XV века, заимствовано из старославянского «сѣра» — «сера, смола», вообще «горючее вещество, жир». Этимология слова не выяснена до настоящих времен, поскольку первоначальное общеславянское название вещества утрачено и слово дошло до современного русского языка в искажённом виде.

По предположению Фасмера, «сера» восходит к лат. сera — «воск» или лат. serum — «сыворотка».

Латинское sulfur (происходящее из эллинизированного написания этимологического sulpur ), предположительно, восходит к индоевропейскому корню *swelp — «гореть».

История открытия

Точное время открытия серы не установлено, но этот элемент использовался до нашей эры.

Сера использовалась жрецами в составе священных курений при религиозных обрядах. Она считалась произведением сверхчеловеческих существ из мира духов или подземных богов.

Очень давно сера стала применяться в составе различных горючих смесей для военных целей. Уже у Гомера описаны «сернистые испарения», смертельное действие выделений горящей серы. Сера, вероятно, входила в состав «греческого огня», наводившего ужас на противников.

Около VIII века китайцы стали использовать её в пиротехнических смесях, в частности, в смеси типа пороха. Горючесть серы, лёгкость, с которой она соединяется с металлами с образованием сульфидов (например, на поверхности кусков металла), объясняют то, что её считали «принципом горючести» и обязательной составной частью металлических руд.

Пресвитер Теофил (XII век) описывает способ окислительного обжига сульфидной медной руды, известный, вероятно, ещё в древнем Египте.

В период арабской алхимии возникла ртутно-серная теория состава металлов, согласно которой сера почиталась обязательной составной частью (отцом) всех металлов.

В дальнейшем она стала одним из трёх принципов алхимиков, а позднее «принцип горючести» явился основой теории флогистона. Элементарную природу серы установил Лавуазье в своих опытах по сжиганию.

С введением пороха в Европе началось развитие добычи природной серы, а также разработка способа получения её из пиритов; последний был распространён в древней Руси. Впервые в литературе он описан у Агриколы.

Сера в природе

Большие скопления самородной серы (с содержанием > 25 %) редки, они встречаются в местах вулканической активности, им сопутствуют сернистые фумаролы и сернистые воды.

Серная руда разрабатывается в месторождениях самородной серы, добывается из сульфидных руд и промышленных газов.

Серные бактерии могут окислять сероводород от гниющих органических остатков до серы и накапливать её.

Природные минералы серы

Сера является шестнадцатым по химической распространённости элементом в земной коре. Встречается в свободном (самородном) состоянии и в связанном виде.

Важнейшие природные минералы серы: FeS2 — железный колчедан, или пирит, ZnS — цинковая обманка, или сфалерит (вюрцит), PbS — свинцовый блеск, или галенит, HgS — киноварь, Sb2S3 — антимонит, Cu2S — халькозин, CuS — ковеллин, CuFeS2 — халькопирит. Кроме того, сера присутствует в нефти, природном угле, природных газах и сланцах. Сера — шестой элемент по содержанию в природных водах, встречается в основном в виде сульфат-иона и обусловливает «постоянную» жёсткость пресной воды. Жизненно важный элемент для высших организмов, составная часть многих белков, концентрируется в волосах.

Получение

В древности и в средние века серу добывали, вкапывая в землю большой глиняный горшок, на который ставили другой, с отверстием в дне. Последний заполняли породой, содержащей серу, и затем нагревали. Сера плавилась и стекала в нижний горшок.

В настоящее время серу получают главным образом путём выплавки самородной серы непосредственно в местах её залегания под землёй. Серные руды добывают разными способами — в зависимости от условий залегания. Залежам серы почти всегда сопутствуют скопления ядовитых газов — соединений серы. К тому же нельзя забывать о возможности её самовозгорания.

При добыче руды открытым способом экскаваторами снимают пласты пород, под которыми залегает руда. Взрывами рудный пласт дробят, после чего глыбы руды отправляют на сероплавильный завод, где из концентрата извлекают серу.

В 1890 г. Герман Фраш предложил плавить серу под землёй и через скважины, подобные нефтяным, выкачивать её на поверхность. Сравнительно невысокая (113 °C) температура плавления серы подтверждала реальность идеи Фраша. В 1890 г. начались испытания, приведшие к успеху.

Читайте также:  Сдача металлолома организацией ндс

Известно несколько методов получения серы из серных руд: пароводяные, фильтрационные, термические, центрифугальные и экстракционные.

Также сера в больших количествах содержится в природном газе в газообразном состоянии (в виде сероводорода, сернистого ангидрида). При добыче она откладывается на стенках труб и оборудования, выводя их из строя. Поэтому её улавливают из газа как можно быстрее после добычи. Полученная химически чистая мелкодисперсная сера является идеальным сырьём для химической и резиновой промышленности.

Серу из природного сернистого газа получают методом Клауса. Для этого используются так называемые серные ямы, где происходит дегазация серы, на выходе получают модифицированную серу — продукт, широко использующийся в производстве асфальта. Технологические установки для получения серы обычно включают в себя ямы недегазированной серы, ямы дегазации, ямы хранения дегазированной серы, а также налив жидкой серы и склад комовой серы. Стены ямы обычно делают из кирпича, дно заливают бетоном, а сверху закрывают яму алюминиевой крышей. Так как сера — это весьма агрессивная среда, ямы периодически приходится полностью реконструировать.

Крупнейшее месторождение самородной серы вулканического происхождения находится на острове Итуруп с запасами категории A+B+C1 — 4227 тыс. тонн и категории C2 — 895 тыс. тонн, что достаточно для строительства предприятия мощностью 200 тыс. тонн гранулированной серы в год.

Производители

С 1939 по 1986 год крупнейшим производителем серы в СССР был Медногорский медно-серный комбинат (ММСК): в середине 1950-х годов он выпускал до 250—280 тысяч тонн в год, что составляло 80 % серы, производившейся в стране.

…Утром мы были на медносерном заводе. Около 80 процентов серы, выпускаемой в нашей стране, добывается на этом предприятии.

— До пятидесятого года стране приходилось импортировать много серы из-за границы. Теперь нужда в импорте серы отпала, — говорил директор завода Александр Адольфович Бурба. — Но завод продолжает расширяться. Начали строить цех производства серной кислоты.

С высокой эстакады застывшим потоком повис ярко-жёлтый массив серы. То, что мы видим в небольших количествах в стеклянных баночках в лабораториях, здесь, на заводском дворе, лежало огромными глыбами».

В начале XXI века основными производителями серы в России являются предприятия ОАО Газпром: ООО Газпром добыча Астрахань и ООО Газпром добыча Оренбург, получающие её как побочный продукт при очистке газа.

Товарные формы

В промышленности реализовано получение серы в различных товарных формах. Выбор той или иной формы определяется требованиями заказчика.

Комовая сера до начала 1970-х годов была основным видом серы, выпускаемым промышленностью СССР. Её получение технологически просто и осуществляется подачей жидкой серы по обогреваемому трубопроводу на склад, где производится заливка серных блоков. Застывшие блоки высотой 1—3 метра разрушают на более мелкие куски и транспортируют заказчику. Метод, однако, имеет недостатки: невысокое качество серы, потери на пыль и крошку при рыхлении и погрузке, сложность автоматизации.

Жидкую серу хранят в обогреваемых резервуарах и транспортируют в цистернах. Транспорт жидкой серы более выгоден, чем её плавление на месте. Достоинства получения жидкой серы — отсутствие потерь и высокая чистота. Недостатки — опасность возгорания, траты на обогрев цистерн.

Формованная сера бывает чешуйчатая и пластинчатая. Чешуйчатую серу начали производить на НПЗ в 1950-х годах. Для получения используют вращающийся барабан, внутри он охлаждается водой, а снаружи кристаллизуется сера в виде чешуек толщиной 0,5—0,7 мм. В начале 1980-х годов вместо чешуйчатой стали выпускать пластинчатую серу. На движущуюся ленту подается расплав серы, который охлаждается по мере движения ленты. На выходе образуется застывший лист серы, который ломают с образованием пластинок. Сегодня эта технология считается устаревшей, хотя около 40 % канадской серы экспортируется именно в таком виде ввиду больших капиталовложений в установки для её получения.

Гранулированную серу получают различными методами.

  • Водная грануляция (пеллетирование) разработана в 1964 году английской фирмой «Эллиот». Процесс основан на быстром охлаждении капель серы, падающих в воду. Первое внедрение технологии — процесс «Салпел» в 1965 году. Крупнейший завод позже был построен в Саудовской Аравии в 1986 году. На нём каждая из трёх установок может производить до 3500 т гранулированной серы в сутки. Недостаток технологии — ограниченное качество гранул серы, обладающих неправильной формой и повышенной хрупкостью.
  • Грануляция в кипящем слое разработана французской компанией «Перломатик». Капли жидкой серы подаются вверх. Они охлаждаются водой и воздухом и смачиваются жидкой серой, которая застывает на образующихся гранулах тонким слоем. Конечный размер гранул 4—7 мм. Более прогрессивным является процесс «Прокор», который широко внедрён в Канаде. В нём применяются барабанные грануляторы. Однако этот процесс очень сложен в управлении.
  • Воздушно-башенная грануляция разработана и внедрена в Финляндии в 1962 году. Расплав серы диспергируется с помощью сжатого воздуха в верхней части грануляционной башни. Капли падают и затвердевают, попадая на транспортную ленту.

Молотая сера является продуктом размола комовой серы. Степень измельчения может быть различной. Его проводят сначала в дробилке, потом в мельнице. Таким способом возможно получение очень высокодисперсной серы с размером частиц менее 2 мкм. Грануляцию порошковой серы проводят в прессах. Необходимо использование связующих добавок, в качестве которых используют битумы, стеариновую кислоту, жирные кислоты в виде водной эмульсии с триэтаноламином и другие.

Коллоидная сера — это разновидность молотой серы с размером частиц менее 20 мкм. Её применяют в сельском хозяйстве для борьбы с вредителями и в медицине как противовоспалительные и дезинфицирующие средства. Коллоидную серу получают различными способами.

  • Способ получения путём размола широко распространён, поскольку не предъявляет высоких требований к сырью. Одним из лидеров по этой технологии является фирма «Байер».
  • Способ получения из расплавленной серы или её паров был внедрён в США в 1925 году. Технология подразумевает смешение с бентонитом, полученная смесь образует устойчивые суспензии с водой. Однако содержание серы в растворе невелико (не более 25 %).
  • Экстракционные способы получения основаны на растворении серы в органических растворителях и дальнейшем испарении последних. Однако они не получили широкого распространения.

Высокочистую серу получают используя химические, дистилляционные и кристаллизационные методы. Её применяют в электронной технике, при изготовлении оптических приборов, люминофоров, в производстве фармацевтических и косметических препаратов — лосьонов, мазей, средств против кожных болезней.

Применение

Примерно половина производимой серы используется в производстве серной кислоты.

Серу применяют для вулканизации каучука, как фунгицид в сельском хозяйстве и как сера коллоидная — лекарственный препарат. Также сера в составе серобитумных композиций применяется для получения сероасфальта, а в качестве заместителя портландцемента — для получения серобетона. Сера находит применение для производства пиротехнических составов, ранее использовалась в производстве пороха, применяется для производства спичек.

Свойства

Физические свойства

Сера существенно отличается от кислорода способностью образовывать устойчивые цепочки и циклы из атомов. Наиболее стабильны циклические молекулы S8, имеющие форму короны, образующие ромбическую и моноклинную серу. Это кристаллическая сера — хрупкое вещество жёлтого цвета. Кроме того, возможны молекулы с замкнутыми (S4, S6) цепями и открытыми цепями. Такой состав имеет пластическая сера, вещество коричневого цвета, которая получается при резком охлаждении расплава серы (пластическая сера уже через несколько часов становится хрупкой, приобретает жёлтый цвет и постепенно превращается в ромбическую). Формулу серы чаще всего записывают просто S, так как она, хотя и имеет молекулярную структуру, является смесью простых веществ с разными молекулами. В воде сера нерастворима, но хорошо растворяется в органических растворителях, например, в сероуглероде, скипидаре.

Плавление серы сопровождается заметным увеличением объёма (примерно 15 %). Расплавленная сера представляет собой жёлтую легкоподвижную жидкость, которая выше 160 °C превращается в очень вязкую тёмно-коричневую массу. Наибольшую вязкость расплав серы приобретает при температуре 190 °C; дальнейшее повышение температуры сопровождается уменьшением вязкости и выше 300 °C расплавленная сера снова становится подвижной. Это связано с тем, что при нагревании серы она постепенно полимеризуется, увеличивая длину цепочки с повышением температуры. При нагревании серы свыше 190 °C полимерные звенья начинают рушиться.

Сера может служить простейшим примером электрета. При трении сера приобретает сильный отрицательный заряд.

Фазовая диаграмма серы

Элементарная кристаллическая сера может существовать в виде двух аллотропных модификаций (энантиотропия серы) — ромбической и моноклинной, — то есть сера диморфна, поэтому для элементарной серы возможно существование четырёх фаз: твёрдой ромбической, твёрдой моноклинной, жидкой и газообразной, а на фазовой диаграмме серы (см. рисунок; для давления использован логарифмический масштаб) имеются два поля твёрдых фаз: область ромбической серы и область существования моноклинной серы (треугольник АВС).

На фазовой диаграмме серы:

  • DA — линия возгонки ромбической серы Sp, описывающая зависимость давления насыщенного пара серы Sп от температуры над твёрдой ромбической серой;
  • AС — линия возгонки моноклинной серы Sм, описывающая зависимость давления насыщенного пара серы от температуры над твёрдой моноклинной серой;
  • СF — линия испарения жидкой серы Sж, описывающая зависимость давления насыщенного пара серы от температуры над расплавом серы;
  • AB — линия полиморфного превращения сера ромбическая сера моноклинная, описывающая зависимость температуры фазового перехода между ромбической и моноклинной серой от давления;
  • ВЕ — линия плавления ромбической серы, описывающая зависимость температуры плавления ромбической серы от давления;
  • ВЕ — линия плавления моноклинной серы, описывающая зависимость температуры плавления моноклинной серы от давления.
Читайте также:  Гильотина ручная для резки металла zak met ng 2000

Пунктирные линии отражают возможность существования метастабильных фаз, которые наблюдаются при резком изменении температуры:

  • AО — линия сублимации перегретой ромбической серы;
  • ВО — линия плавления перегретой ромбической серы;
  • СО — линия испарения переохлаждённой жидкой серы;

На фазовой диаграмме серы имеются три стабильные тройные точки и одна метастабильная, каждая из которых отвечает условиям термодинамического равновесия трёх фаз:

  • точка А (дополнительная): равновесие твёрдой ромбической, твёрдой моноклинной и газообразной серы;
  • точка В (дополнительная): равновесие твёрдой ромбической, твёрдой моноклинной и жидкой серы;
  • точка С (основная): равновесие твёрдой моноклинной, расплавленной и газообразной серы;
  • точка О (метастабильная): метастабильное равновесие между перегретой твёрдой ромбической, переохлаждённой жидкой и газообразной серой.

Как показывает фазовая диаграмма, ромбическая сера не может одновременно находиться в равновесии с расплавом и парами серы, поэтому в основной тройной точке (когда равновесные фазы находятся в разных агрегатных состояниях) твёрдая фаза представлена моноклинной серой. Метастабильная тройная точка появляется вследствие низкой скорости превращения одной кристаллической модификации серы в другую.

Химические свойства

На воздухе сера горит, образуя сернистый газ — бесцветный газ с резким запахом:

С помощью спектрального анализа установлено, что на самом деле процесс окисления серы в двуокись представляет собой цепную реакцию и происходит с образованием ряда промежуточных продуктов: моноокиси серы S2O2, молекулярной серы S2, свободных атомов серы S и свободных радикалов моноокиси серы SO.

Восстановительные свойства серы проявляются в реакциях серы и с другими неметаллами, однако при комнатной температуре сера реагирует только со фтором:

Расплав серы реагирует с хлором, при этом возможно образование двух низших хлоридов (дихлорид серы и дитиодихлорид):

При избытке серы также образуются разнообразные дихлориды полисеры типа SnCl2.

При нагревании сера также реагирует с фосфором, образуя смесь сульфидов фосфора, среди которых — высший сульфид P2S5:

Кроме того, при нагревании сера реагирует с водородом, углеродом, кремнием:

S + H2 → H2S (сероводород) C + 2S → CS2 (сероуглерод) Si + 2S → SiS2 (сульфид кремния)

При нагревании сера взаимодействует со многими металлами, часто — весьма бурно. Иногда смесь металла с серой загорается при поджигании. При этом взаимодействии образуются сульфиды:

2Na + S → Na2S Ca + S → CaS 2Al + 3S → Al2S3 Fe + S → FeS

Растворы сульфидов щелочных металлов реагируют с серой с образованием полисульфидов:

Из сложных веществ следует отметить прежде всего реакцию серы с расплавленной щёлочью, в которой сера диспропорционирует аналогично хлору:

Полученный сплав называется серной печенью.

С концентрированными кислотами-окислителями (HNO3, H2SO4) сера реагирует только при длительном нагревании:

При увеличении температуры в парах серы происходят изменения в количественном молекулярном составе. Число атомов в молекуле уменьшается:

При 800—1400 °C пары состоят в основном из двухатомной серы:

А при 1700 °C сера становится атомарной:

Биологическая роль

Сера — один из биогенных элементов. Сера входит в состав некоторых аминокислот (цистеин, метионин), витаминов (биотин, тиамин), ферментов. Сера участвует в образовании третичной структуры белка (формирование дисульфидных мостиков). Также сера участвует в бактериальном фотосинтезе (сера входит в состав бактериохлорофилла, а сероводород является источником водорода). Окислительно-восстановительные реакции серы — источник энергии в хемосинтезе.

В человеке содержится примерно 2 г серы на 1 кг массы тела.

Биологической действие

Чистая сера не ядовита, все же летучие серосодержащие соединения ядовиты (сернистый газ, серный ангидрид, сероводород и др.).

Пожароопасные свойства серы

Тонкоизмельчённая сера склонна к химическому самовозгоранию в присутствии влаги, при контакте с окислителями, а также в смеси с углём, жирами, маслами. Сера образует взрывчатые смеси с нитратами, хлоратами и перхлоратами. Самовозгорается при контакте с хлорной известью.

Средства тушения: распылённая вода, воздушно-механическая пена.

По данным В. Маршалла пыль серы относится к разряду взрывоопасных, но для взрыва необходима достаточно высокая концентрация пыли — порядка 20 г/м³ (20 000 мг/м³), такая концентрация во много раз превышает предельно допустимую концентрацию для человека в воздухе рабочей зоны — 6 мг/м³.

Пары образуют с воздухом взрывчатую смесь.

Горение серы протекает только в расплавленном состоянии аналогично горению жидкостей. Верхний слой горящей серы кипит, создавая пары, которые образуют слабо светящееся голубое пламя высотой до 5 см. Температура пламени при горении серы составляет 1820 °C.

Так как воздух по объёму состоит приблизительно из 21 % кислорода и 79 % азота и при горении серы из одного объёма кислорода получается один объём SO2, то максимальное теоретически возможное содержание SO2 в газовой смеси составляет 21 %. На практике горение происходит с некоторым избытком воздуха, и объёмное содержание SO2 в газовой смеси меньше теоретически возможного, составляя обычно 14—15 %.

Обнаружение горения серы пожарной автоматикой является трудной проблемой. Пламя сложно обнаружить человеческим глазом или видеокамерой, спектр голубого пламени лежит в основном в ультрафиолетовом диапазоне. Тепловыделение при пожаре приводит к температуре ниже, чем при пожарах других распространённых пожароопасных веществ. Для обнаружения горения тепловым извещателем необходимо размещать его непосредственно близко к сере. Пламя серы не излучает в инфракрасном диапазоне. Таким образом оно не будет обнаружено распространёнными инфракрасными извещателями. Ими будут обнаруживаться лишь вторичные возгорания. Пламя серы не выделяет паров воды. Таким образом детекторы ультрафиолетовых извещателей пламени, использующие соединения никеля, не будут работать.

Для эффективного обнаружения пламени рекомендуется использовать ультрафиолетовые извещатели с детекторами на основе молибдена. Они имеют спектральный диапазон чувствительности 1850…2650 ангстрем, который подходит для обнаружения горения серы.

Для выполнения требований пожарной безопасности на складах серы необходимо:

  • конструкции и технологическое оборудование должны регулярно очищаться от пыли;
  • помещение склада должно постоянно проветриваться естественной вентиляцией при открытых дверях;
  • дробление комков серы на решётке бункера должно производиться деревянными кувалдами или инструментом из неискрящего материала;
  • конвейеры для подачи серы в производственные помещения должны быть снабжены металлоискателями;
  • в местах хранения и применения серы необходимо предусматривать устройства (бортики, пороги с пандусом и т. п.), обеспечивающие в аварийной ситуации предотвращение растекания расплава серы за пределы помещения или открытой площадки;
  • на складе серы запрещается:
    • производство всех видов работ с применением открытого огня;
    • складировать и хранить промасленную ветошь и тряпки;
    • при ремонте применять инструмент из искродающего материала.

Пожары на складах серы

В декабре 1995 года на открытом складе серы предприятия, расположенного в городе Сомерсет-Уэст Западно-Капской провинции Южно-Африканской Республики, произошёл крупный пожар, погибли два человека.

16 января 2006 года около 17 часов на череповецком предприятии «Аммофос» загорелся склад с серой. Общая площадь пожара — около 250 квадратных метров. Полностью ликвидировать его удалось лишь в начале второго ночи. Жертв и пострадавших нет.

15 марта 2007 года рано утром на ООО «Балаковский завод волоконных материалов» произошёл пожар на закрытом складе серы. Площадь пожара составила 20 м 2 . На пожаре работало 4 пожарных расчёта с личным составом в 13 человек. Примерно через полчаса пожар был ликвидирован. Никто не пострадал.

4 и 9 марта 2008 года произошло возгорание серы в Атырауской области в хранилище серы ТШО на Тенгизском месторождении. В первом случае очаг возгорания удалось потушить быстро, во втором случае сера горела 4 часа. Объём горевших отходов нефтепереработки, к каковым по казахстанским законам отнесена сера, составил более 9 тысяч килограммов.

В апреле 2008 недалеко от посёлка Кряж Самарской области загорелся склад, на котором хранилось 70 тонн серы. Пожару была присвоена вторая категория сложности. К месту происшествия выехали 11 пожарных расчётов и спасатели. В тот момент, когда пожарные оказались около склада, горела ещё не вся сера, а только её небольшая часть — около 300 килограммов. Площадь возгорания вместе с участками сухой травы, прилегающими к складу, составила 80 квадратных метров. Пожарным удалось быстро сбить пламя и локализовать пожар: очаги возгорания были засыпаны землёй и залиты водой.

В июле 2009 года в Днепродзержинске горела сера. Пожар произошёл на одном из коксохимических предприятий в Баглейском районе города. Огонь охватил более восьми тонн серы. Никто из сотрудников комбината не пострадал.

В конце июля 2012 года под Уфой в поселке Тимашево загорелся склад с серой площадью 3200 квадратных метров. На место выехало 13 единиц техники, в тушении пожара задействован 31 пожарный. Произошло загрязнение атмосферного воздуха продуктами горения. Погибших и пострадавших нет.

Источник

Поделиться с друзьями
Металл