Пластичность металла основное требование для выполнения операций

Механические свойства металлов. Пластичность.

Пластичность характеризует способность материала деформироваться, или растягиваться, под воздействием нагрузки и не разрушаться при этом. Чем более пластичен металл, тем больше он может растягиваться, прежде чем наступит разрушение. Пластичность – это важное свойство металла, поскольку от нее зависит характер разрушения металла под воздействием нагрузки, которое может происходить постепенно или внезапно. Если металл обладает высокой степенью пластичность, он, как правило, разрушается и разрывается постепенно. Прежде чем наступит разрыв, пластичный металл изгибается, и это надежный признак происходящего превышения предела текучести. Металлы с низкой пластичностью хрупки, они разрушаются внезапно, с образованием излома и без предупреждающих признаков.

Пластичность металла прямо связана с его температурой. С ростом температуры пластичность материала возрастает, а по мере снижения температуры она снижается. Металлы, проявляющие свойства пластичности при комнатной температуре, могут становиться хрупкими и разрушаться внезапно при температуре ниже нуля.

Металлы с высоким уровнем пластичности называются пластичными, а металлы с низким уровнем пластичности называются хрупкими. Перед разрушением хрупкие материалы не претерпевают заметной или вообще какой-либо деформации. Удачным примером хрупкого материала может служить стекло. Хрупким металлом, имеющим широкое распространение, можно назвать чугун, в особенности белый чугун.

Пластичность – это свойство, которое позволяет нагружать несколько элементов, имеющих некоторый разброс по длине, не перегружая ни один из них до предела разрушения. Если один из элементов несколько короче, но пластичен, его деформация может быть достаточной для равномерного распределения нагрузки по всем элементам. Практическим примером этого может служить индивидуальное натяжение стальных тросов, из которых состоят канаты подвесных мостов. Поскольку этого нельзя сделать с достаточной точностью, тросы изготовляют из пластичного металла. Когда мости нагружен, те тросы, которые кратковременно оказываются под нагрузкой, превышающей их долю, могут растянуться и, следовательно, переложить часть груза на другие тросы.

Пластичность становится еще более важным свойством для металла, который должен подвергаться дополнительным операциям формоизменения. Например, металлы, которые используются для изготовления кузова автомобиля, должны иметь достаточную пластичность, позволяющую придавать материалу нужную форму.

Особенность, которая важна в связи с характеристиками пластичности и прочности, заключается в их зависимости от соотношения между направлением приложения силы и направлением прокатки материала в процессе его производства. Прокатанные металлы обладают ярко выраженными свойствами направленности. Прокатка удлиняет кристаллы или зерна в направлении прокатки гораздо больше, чем в поперечном ей направлении. В результате прочность и пластичность прокатанного металла, например, листовой стали, наиболее велики в направлении прокатки. В поперечном направлении прочность материала может снижаться даже на 30%, а пластичность – на 50%, по сравнению с параметрами в направлении прокатки. По толщине листа прочность и пластичность еще меньше. У некоторых сталей пластичность в этом направлении очень низкая. Каждому из трех указанных выше направлений присвоено буквенное обозначение. Направление прокатки обозначается буквой «X», поперечное направление – «Y», а направление по толщине – буквой «Z».

Возможно, Вам приходилось видеть испытание на загиб стального листа во время аттестации сварщиков, когда у контрольного образца появлялся излом в основном металле. Наиболее частая причина такого разрушения – параллельность направления прокатки листа и оси шва. Хотя металл может обладать отличными характеристиками в направлении прокатки, воздействие нагрузки в любом из двух других направлений может привести к преждевременному разрушению.

Пластичность металла обычно определяется при помощи испытания на растяжение, которое проводится во время измерения предела прочности металла. Пластичность обычно выражается двумя способами: в виде относительного удлинения и относительного сужения площади сечения.

Источник

Технологические свойства металлов и сплавов

Технологические свойства металлов и сплавов

Пластичность

Одним из основных свойств металлов является их пластичность, т.е способность металла, подвергнутого нагрузке, деформироваться под действием внешних сил без разрушения и давать остаточную (сохраняющуюся после снятия нагрузки) деформацию. Пластичность иногда характеризуют величиной удлинения образца при растяжении.Отношение приращения длины образца при растяжении к его исходной длине, выражаемое в процентах, называется относительным удлинением и обозначается δ, %. Относительное удлинение определяется после разрыва образца и указывает способность металла удлиняться под действием растягивающих усилий.

Ковкость

Способность металла без разрушения поддаваться обработке давлением (ковке, прокатке, прессовке и т.д.) называется его ковкостью. Ковкость металла зависит от его пластичности. Пластичные металлы обычно обладают и хорошей ковкостью.

Усадка

Усадкой металла называется сокращение объема расплавленного металла при его застывании и охлаждении до комнатной температуры.Соответствующее изменение линейных размеров, выраженное в процентах, называется линейной усадкой.

Жидкотекучесть

Способность расплавленного металла заполнять форму и давать хорошие отливки, точно воспроизводящие форму, называется жидкотекучестью. Кроме хорошего заполнения формы, лучшая жидкотекучесть способствует получению здоровой плотной отливки благодаря более полному выделению из жидкого металла газов и неметаллических включений. Жидкотекучесть металла определяется его вязкостью в расплавленном состоянии.

Износостойкость

Способность металла сопротивляться истиранию, разрушению поверхности или изменению размеров под действием трения называется износостойкостью.

Коррозионная стойкость

Способность металла сопротивляться химическому или электрохимическому разрушению его во внешней влажной среде под действием химических реактивов и при повышенных температурах называется коррозионной стойкостью.

Читайте также:  Самый лучший блэк металл
Обрабатываемость

Способность металла обрабатываться при помощи различных режущих инструментов называется обрабатываемостью.

Рубрики: Свойства металлов, применение

Технологические свойства

Эти свойства характеризуют способность металлов подвергаться обработке в холодном и горячем состояниях. Технологические свойства определяют при технологических пробах, которые дают качественную оценку пригодности металлов к тем или иным способам обработки. Образец, подвергнутый технологической пробе (рис. 12), осматривают. Признаком того, что образец выдержал испытание, является отсутствие трещин, надрывов, расслоения или излома. К основным технологическим свойствам относят: обрабатываемость резанием, свариваемость, ковкость, литейные свойства и др.

Обрабатываемость резанием – одно из важнейших технологических свойств, потому что подавляющее большинство заготовок, а также деталей сварных узлов и конструкций подвергается механической обработке. Одни металлы обрабатываются хорошо до получения чистой и гладкой поверхности, другие же, имеющие высокую твердость, плохо. Очень вязкие металлы с низкой твердостью также плохо обрабатываются: поверхность получается шероховатой, с задирами. Улучшить обрабатываемость, например, стали можно термической обработкой, понижая или повышая ее твердость.

Свариваемость – способность металлов образовывать сварное соединение, свойства которого близки к свойствам основного металла. Ее определяют пробой сваренного образца на загиб или растяжение. Ковкость – способность металла обрабатываться давлением в холодном или горячем состоянии без признаков разрушения. Ее определяют кузнечной пробой на осадку до заданной степени деформации. Высота образца для осадки равна обычно двум его диаметрам. Если на боковой поверхности образца трещина не образуется, то такой образец считается выдержавшим пробу, а испытуемый металл – пригодным для обработки давлением.

Статья о свариваемости сталей

Литейные свойства металлов характеризуют способность их образовывать отливки без трещин, раковин и других дефектов. Основными литейными свойствами являются жидкотекучесть, усадка и ликвация.

Жидкотекучесть – способность расплав ленного металла хорошо заполнять полость литейной формы. Усадка при кристаллизации – это уменьшение объема металла при переходе из жидкого состояния в твердое; является причиной образования усадочных раковин и усадочной пористости (см. рис. 6) в слитках и отливках.

Ликвация – неоднородность химического состава сплавов, возникающая при их кристаллизации, обусловлена тем, что сплавы в отличие от чистых металлов кристаллизуются не при одной температуре, а в интервале температур. Чем шире температурный интервал кристаллизации сплава, тем сильнее развивается ликвация, причем наибольшую склонность к ней проявляют те компоненты сплава, которые наиболее сильно влияют на ширину температурного интервала кристаллизации (для стали, например, сера, кислород, фосфор, углерод).


Рис. 12. Технологические пробы: а – изгиб на определенный угол, б – изгиб до параллельности сторон, в – изгиб до соприкосновения сторон, г – на навивание, д – на сплющивание труб, е – на осадку

Технологические свойства металлов

Технологические свойства характеризуют способность металлов и сплавов подвергаться обработке различными способами (литьем, обработкой давлением, сваркой, обра­боткой резанием). К технологическим свойствам относят­ся литейные свойства, ковкость, свариваемость, обрабаты­ваемость резанием.

Готовые изделия и заготовки для дальнейшей обра­ботки производятся путем литья или об­работки давлением. Детали и заготовки, полученные литьем, называются отливками. Обработ­кой давлением могут быть получены либо заготовки по­стоянного поперечного сечения по длине (прутки, лис­ты, лента и др.) чаще всего путем прокатки, а также прессо­вания и волочения, либо заготовки, имеющие приближен но форму готовой детали, путем ковки или штамповки. Заго­товки, полученные ковкой или штамповкой, называются поковками. Таким образом, металлические заготовки мо­гут представлять собой отливки, поковки или прокат. Каж­дый из способов получения заготовок предъявляет свои требования к металлам и сплавам, а каждый вид заготов­ки имеет свои особенности последующей обработки (в том числе, термической). Сплавы, предназначенные для полу­чения деталей литьем, называются литейными. Сплавы, предназначенные для получения деталей обработкой дав­лением, называют реформируемыми.

Литейные свойства металлов и сплавов характеризуют их способность образовывать отливки без трещин, раковин и других дефектов. Основными литейными свойствами являются жидкотекучесть, усадка, трещиностойкость, га­зонасыщение.

Ковкость – способность металла обрабатываться дав­лением при ковке, штамповке, прокатке, т. е. принимать нужную форму под действием удара или давления в нагре­том или холодном состоянии без признаков разрушения.

Сваркой называется технологический процесс полу­чения неразъемных соединений материалов путем уста­новления межатомных связей между свариваемыми час­тями при их нагреве, или пластическом деформировании, или совместном действии того и другого. Сварка является основным процессом получения метал­лических сооружений, обеспечивая высокую производительность, экономичность и прочность.

Свариваемостью называют способность металла об­разовывать прочное сварное соединение. Хорошей свари­ваемостью обладает низкоуглеродистая сталь, труднее сварить чугун и цветные металлы.

Заключительной стадией изготовления изделий час­то является обработка резанием, заключающаяся в сня­тии с заготовки режущим инструментом слоя материала в виде стружки. В результате этого заготов­ка приобретаетправильную форму, точные размеры, не­обходимое качество поверхности.

Обрабатываемостью резанием называют способность металла поддаваться обработке резанием. Металлы и сплавы, имеющие высокую твердость, плохо поддаются обработке резанием. Также плохо обрабатываются вязкие металлы с низкой твердостью.

Технологические свойства определяются при техноло­гических испытаниях (пробах), которые дают качествен­ную оценку пригодности металлов и сплавов к различ­ным способам обработки. Некоторые виды технологичес­ких испытаний приведены в конце следующего раздела.

Похожие статьи:

Металлы — технологические свойства

К основным технологическим свойствам стоит отнести следующие характеристики:

  • Жидкотекучесть (литейность) — способность материала в расплавленном состоянии заполнять литейную форму, без оставления пустот.
  • Свариваемость — способность выполнять неразъемные соединения деталей под действием различных видов сварки (газовая, электрическая, давлением).
  • Ковкость (деформируемость) — возможность менять форму изделия в горячем состоянии или при нормальной температуре под воздействием давления.
  • Прокаливаемость — способность улучшения различных свойств металла путем закалки на различную глубину.
  • Возможность выполнения обработки металла при помощи режущего оборудования показывает возможность выполнения токарных и фрезерных операций.
Читайте также:  Что прочнее сплав или чистый металл

Все эти технологические свойства металлов и сплавов в комплексе и определяют дальнейшую сферу применения.

Свойства металлов

Свойства металлов подразделяются на физические, химические, механические, технологические и эксплуатационные.

Физические свойства металлов:

Плотность — количество вещества, содержащееся в единице объема.

Плавление — способность металла переходить из кристаллического (твердого) состояния в жидкое с поглощением теплоты.

Теплопроводность — способность металла с той или иной скоростью проводить теплоту при нагревании.

Электропроводность — способность металла проводить электрический ток.Тепловое расширение — способность металла увеличивать свой объем при нагревании.

Химические свойства металлов:

Химические свойства металлов характеризуют отношение их к химическим воздействиям различных активных сред. Каждый металл обладает определенной способностью сопротивляться этим воздействиям. Основными химическими свойствами металлов являются окисляемость и коррозионная стойкость.

Окисляемость — способность металла вступать в реакцию с кислородом под воздействием окислителей.

Коррозионная стойкость — способность металла сопротивляться коррозии.

Механические свойства металлов:

Твердость — способность металла сопротивляться проникновению в него более твердого тела.

Прочность — способность металла сопротивляться разрушению под действием внешних сил.

Вязкость — способность металла сопротивляться быстро возрастающим ударным нагрузкам.

Упругость — способность металла восстанавливать свою первоначальную форму и размеры после снятия действующей нагрузки.

Пластичность — способность металла, не разрушаясь, изменять свою форму под действием нагрузки и сохранять полученную форму после снятия нагрузки.Технологические свойства металлов:

Ковкость — способность металла изменять свою форму в нагретом или холодном состоянии под действием внешних сил.

Свариваемость — способность двух частей металла при нагревании прочно соединяться друг с другом.

Жидкотекучесть — способность расплавленного металла легко растекаться и хорошо заполнять форму.

Прокаливаемость — способность металла закаливаться на ту или иную глубину.

Обрабатываемость резанием — способность металла подвергаться механической обработке режущим инструментом с определенной скоростью и усилием резания.

Эксплуатационные свойства металлов:

Износостойкость — свойство материала оказывать сопротивление износу, т. е. постепенному изменению размеров и формы тела вследствие разрушения поверхностного слоя изделия при трении.

Хладостойкость — способность материалов, элементов, конструкций и их соединений сопротивляться хрупким разрушениям при низких температурах окружающей среды.

Жаропрочность- способность конструкционных материалов (главным образом металлических, а также керамических, полимерных и др.) выдерживать механические нагрузки без существенных деформаций, не разрушаясь при повышенных температурах.

Антифрикционность – способность конструкционных материалов сопротивляться истиранию.

§ 4. Технологические свойства металлов

Раздел: БИБЛИОТЕКА ТЕХНИЧЕСКОЙ ЛИТЕРАТУРЫ Короткий путь https://bibt.ru
>

Технологические свойства определяют пригодность материала для изготовления из него детали тем или иным способом. К числу этих свойств относятся: обрабатываемость резанием, ковкость, свариваемость, жидкотекучесть, усадка, склонность к ликвации и др.

Обрабатываемость резанием — способность металла изменять свою форму под действием режущего инструмента (резца, фрезы, сверла и т. д.) при различных Операциях механической обработки (обтачивании, фрезеровании, сверлении).

Ковкость—способность металла принимать определенную форму и размеры под влиянием прилагаемой нагрузки без разрушения.

Свариваемость—способность металлов образовывать прочные соединения при нагреве свариваемых частей до расплавленного или до пластичного состояния. Хорошей свариваемостью обладают стали с низким содержанием углерода. Плохо свариваются чугун, медные и алюминиевые сплавы.

Пригодность металла или сплава для производства отливок определяется его жидкотекучими свойствами. Металл должен обладать способностью хорошо заполнять литейную форму и давать отливки с резко очерченными контурами, т. е. иметь хорошую жидкотекучесть. При недостаточной жидкотекучести форма заполняется не полностью и в тонких сечениях отливки образуются недоливы. Повышение температуры заливки улучшает жидкотекучесть сплавов.

Величину жидкотекучести определяют по технологической пробе (рис. 2), т. е. по длине спирального канала, заполненного металлом в контрольной форме. Чем больше жидкотекучесть сплава, тем большей длины участок спирали он заполнит до затвердевания.

Рис. 2. Технологическая проба для испытания металлов и их сплавов на жидкотекучесть:

1 — литейный стояк, 2 — выпор, 3 — зумф под стояком, 4 — спираль

Усадка — относительное уменьшение основных линейных и объемных размеров отливки по сравнению с размерами модели, по которой она была отформована. При большой усадке металла во время его кристаллизации и охлаждения возникают значительные внутренние напряжения и образуются усадочные раковины. Для удобства усадку отливок выражают в процентах по отношению к размерам модели.

Величина усадки отливок зависит от химического состава сплава, конфигурации детали, а также от других факторов.

Ликвация — свойство сплавов образовывать при охлаждении и кристаллизации отливки с неоднородным химическим составом. Это объясняется тем, что сплав в форме охлаждается неравномерно. Чем больше разница в температуре внешних и внутренних частей отливки при ее охлаждении, тем больше компонентов, плавящихся при более низкой температуре, скапливается в середине сечения.

Различают два вида ликвации: внутрикристаллическую и зональную. Внутрикристаллическая ликвация характерна для фасонных отливок, изготовляемых из сплавов, образующих твердые растворы. В большинстве случаев скорость затвердевания отливки превышает скорость диффузии, которая необходима для выравнивания химического состава. Последнее является основной причиной развития внутрикристаллической ликвации в отливках.

Зональная ликвация наблюдается в толстостенных отливках, слитках, которые медленно охлаждаются в формах. Зональная ликвация может происходить по двум основным причинам: в связи с расслоением жидкого сплава из-за различной плотности, которое происходит при недостаточном перемешивании сплава при плавке и заливке, или при выпадении из жидкого сплава легких и тяжелых кристаллизующихся фаз.

Читайте также:  Проба 930 что за металл

Перейти вверх к навигации

Технологические и эксплуатационные свойства конструкционных материалов

Способность материала подвергаться различным методам горячей и холодной обработки определяют по его технологическим свойствам.
Прокаливаемость

— способность стали приобретать в результате закалки мартенситную или мартенситно-трооститную структуру с высокой твердостью в слое определенного размера. Количественно прокаливаемость характеризуется критическим диаметром dкр, представляющим собой максимальный диаметр заготовки, в которой в результате закалки получается мартенситная или полумартенситная (50 % мартенсита + 50 % троостита) структура.

— способность материалов подвергаться механической обработке резанием. Это технологическое свойство можно оценивать одним или несколькими показателями, к которым относят допустимую скорость резания, стойкость инструмента при стандартных режимах резания; шероховатость обработанной поверхности и т. п. Производительность и себестоимость обработки зависят главным образом от допустимой скорости резания, поэтому данный показатель обрабатываемости является основным. Это свойство материалов определяется их химическим составом, структурным состоянием, механическими и теплофизическими свойствами. Так, из всех конструкционных материалов, применяемых в машиностроении, магний обладает наиболее высокой обрабатываемостью. Однако он склонен к возгоранию в процессе механической обработки, поэтому при резании требуется соблюдение специальных мер техники безопасности.

Способность объемной заготовки принимать необходимую форму под влиянием внешней нагрузки без разрушения и при наименьшем сопротивлении нагрузке оценивается деформируемостью

. Это технологическое свойство определяется сопротивлением деформированию и пластичностью, которые, в свою очередь, зависят от строения атома, атомно-кристаллического строения, химического состава, макро- и микроструктуры материала, а также от условий деформирования. Наиболее широкое применение в процессах обработки давлением получили заготовки из стали, алюминиевых, магниевых, медных и титановых сплавов.

К литейным свойствам

металлов относят такие технологические свойства, которые проявляются при заполнении литейной формы и кристаллизации отливок в форме. Наиболее важные литейные свойства — жидкотекучесть, усадка (объемная и линейная), склонность сплавов к ликвации, образованию трещин, усадочных раковин и пористости, поглощению газов и др. На литейные свойства влияют химический состав расплава, температура его заливки, скорость охлаждения сплава в форме, масса, конструкция отливки и литейной формы. Так, серый чугун обладает высокими литейными свойствами, и отливки из этого сплава могут быть получены как в песчаных, оболочковых, так и в металлических формах. Он имеет высокую жидкотекучесть, которая позволяет изготавливать отливки с минимальной толщиной стенки 3…4 мм, и малую усадку (0,9…1,3 %), обеспечивающую получение отливок без усадочных раковин, пористости и трещин.

— технологическое свойство материалов или их сочетаний при установленной технологии сварки образовывать соединения, отвечающие конструктивным требованиям и условиям эксплуатации изделия. Свариваемость зависит, с одной стороны, от материала, технологии сварки, конструктивного оформления соединения, а с другой — от требуемых эксплуатационных свойств сварной конструкции. Если требования к эксплуатационным свойствам сварных соединений выполняются, то свариваемость материала считается хорошей. При пониженной свариваемости образуются горячие и холодные трещины в шве и зоне термического влияния. К таким дефектам склонны высокоуглеродистые и легированные стали, магниевые и алюминиевые сплавы.

Технологические свойства часто определяют выбор материала для изготовления конструкции. Разрабатываемые материалы могут быть внедрены в производство только в том случае, если их технологические свойства удовлетворяют необходимым требованиям. Например, широкому внедрению композиционных материалов препятствуют их низкие технологические свойства.

характеризуют способность материала работать в конкретных условиях:

— способность материала оказывать сопротивление изнашиванию в определенных условиях трения, оцениваемое величиной, обратной скорости изнашивания или интенсивности изнашивания;

— способность материала сопротивляться воздействию агрессивных (кислотных, щелочных) сред;

— это способность материала сопротивляться окислению в газовой среде при высокой температуре;

— это способность материала сохранять свои свойства при высоких температурах;

— способность материала сохранять пластические свойства при отрицательных температурах;

— способность материала обеспечивать низкий коэффициент трения скольжения.

Эти и другие эксплуатационные свойства определяют в ходе специальных испытаний в зависимости от условий работы изделий. При выборе материала для создания конструкции необходимо полностью учитывать механические, физико-химические, технологические и эксплуатационные свойства.

Физические свойства металлов

Среди основных общих физических свойств металлов можно выделить:

Важным физическим параметром металла является его плотность или удельный вес. Что это такое? Плотность металла – это количество вещества, которое содержится в единице объема материала. Чем меньше плотность, тем металл более легкий. Легкими металлами являются: алюминий, магний, титан, олово. К тяжелым относятся такие металлы как хром, марганец, железо, кобальт, олово, вольфрам и т. д. (в целом их имеется более 40 видов).

Способность металла переходить из твердого состояния в жидкое, именуется плавлением. Разные металлы имеют разные температуры плавления.

Скорость, с которой в металле проводится тепло при нагревании, называется теплопроводностью металла. И по сравнению с другими материалами все металлы отличаются высокой теплопроводностью, говоря по-простому, они быстро нагреваются.

Помимо теплопроводности все металлы проводят электрический ток, правда, некоторые делают это лучше, а некоторые хуже (это зависит от строения кристаллической решетки того или иного металла). Способность металла проводить электрический ток называется электропроводностью. Металлы, обладающие отличной электропроводностью, это золото, алюминий и железо, именно поэтому их часто используют в электротехнической промышленности и приборостроении.

Источник

Поделиться с друзьями
Металл