Первые металлы которые начал добывать человек

Как люди открыли металлургию и стали производить Медь: первый прорыв в истории человечества

Когда мы впервые взяли камень чтобы расколоть кокос или отломали палку, чтобы проткнуть рыбу мы изобрели инструменты. Когда мы сплели длинную траву и сделали веревку, когда связали ей кости мамонтов мы изобрели дома. Когда мы поняли, что острый камень опасен, мы изобрели оружие.

Эволюция людей постоянно связана с поиском материалов для новых технологий. Настолько, что ранняя история человечества прямо названа по ним. Камень, бронза, железо. И прежде чем мы пойдем с вами дальше, давайте посмотрим эту историю.

Когда обезьяна стала человеком, она взяла в руки камень и палку, и стала властелином мира. Камнем и палкой первые стаи людей завоевали континенты и вызвали последнее вымирание в истории Земли 50 000 лет назад. Это каменный век и он длился 3,4 миллиона лет — самый долгий период человеческого изобретения.

Но затем человеческие стаи поумнели. Они размножились, приручили скот, одомашнили пшеницы и засеяли огороды. Первые деревни, затем города и цари, зажегся огонь первых зиккуратов и формирующая человеческая сеть торговли и знаний позволила не за миллионы, за тысячи лет открыть новую глобальную технологию, которую мы назовем медным веком.

Медь стала первым природным металлом, которая так глобально повлияла на человечество. И ее успех объясняется просто — она была повсюду на континентах и в умеренных количествах чтобы не стать грязью. Впервые медь была использована на Балканах 8000 лет назад, мы найдем первую металлургическую печь человечества в Сербии.

Эти примитивные холодные древесные печи давали лишь богатый медью бесформенный шлак, его пытались убирать из меди с помощью глины. Но начало положено, после открытия угля и мехов, более совершенные печи разгонялись до 1200 градусов, позволяя полностью расплавлять медь и заливать чистую жидкую медь в каменные и глиняные формы. Такие печи 4 000 лет назад возникли по всей планете.

Мягкая, блестящая после полировки, податливая к любым формам медь, стала первой технологической революцией. Благодаря сети торговли и знаний в медный век вступили все первые цивилизации Земли.

Сначала на всех континентах медь стала аналогом золота — предметами роскоши и символом знати. У ольмеков Америки, в Шумере, в Индии, в Китае, Европе и Египте — везде в начале цивилизационного пути медь словно золото, пока не появлялись новые печи и рудники.

По мере развития массовой медной выплавки, роль меди падала и она дешевела. Вместо ювелирных украшений из меди отливались посмертные маски, сосуды, колокола ,светильники, топоры, шила и иглы. Затем медь подхлестнула глобальный торговый обмен и развитие денег как формы ценности и платы.

Довольно быстро цивилизации поняли — медь прекрасный заменитель серебра и золота. Медные слитки как деньги впервые появились на Кипре 4400 лет назад и кипрские медные деньги наполнили эгейский мир, Месопотамию и Древний Египет. Затем торговая цивилизация финикийцев развезла это изобретение по всему миру.

На другом конце света в Америке 2200 лет назад первые цивилизации в изобилии снабжались медью из открытых рудников западного Герреро и Оахаки на западном побережье Мексики и Веракруса на восточном.

А еще дальше за горизонтом юная Япония и Корея организовали с Китаем первое глобальное производство денег, экспортируя тонны меди со своих рудников и получая от китайцев обратно готовые медные монеты.

Однако прекрасная утилитарная медь была слишком мягкой. И хотя ее пытались использовать в качестве зубил, инки крепили медные шипы на свои дубинки а шумеры медные пластины на свои матерчатые доспехи был ясно что для войны и тяжелых инструментов медь совершенно не годилась.

В медный век люди продолжали использовать каменное оружие и инструменты. Но скоро человечество создаст первый искусственный металл и всё в мировой истории изменится.

Источник

Доисторическая добыча полезных ископаемых: история и факты

Добыча человеком полезных ископаемых с помощью систем подземных горных выработок известна с древнейших времён. За сотни тысячелетий без всякого вмешательства извне технология освоения и использования недр Земли в человеческой цивилизации эволюционировала от собирания галечника и выламывания кремния до создания сложных разветвлённых подземных шахт.

На заре человеческой эпохи ископаемые гоминиды 2,6 миллиона лет назад использовали в повседневной жизни обработанный галечник и создавали примитивные орудия труда – ручные рубила. Самые древние галечные орудия найдены на ранних палеолитических стоянках в Южной и Юго-Восточной Африке.

В среднем палеолите предки человека перешли от собирания первичного каменного материала на поверхности земли к непосредственной добыче кремния. В швейцарском кантоне Берн археологами были обнаружены места добычи камня, представляющие собой вертикальные ямы глубиной 60 см, выкопанные роговыми орудиями труда. Самые древние каменные выработки относятся к неандертальской мустьерской археологической культуре.

В позднем палеолите от 40 до 12 тысяч лет назад человек современного типа кроме кремния и кварца использовал в повседневной жизни и другие каменные породы: гранит, песчаник, сланец, кальцит, белемнит, охрам и железняк.

Необходимый материал собирался в местах выходов пород на берегах оврагов и рек, значительные углубления не практиковались, при необходимости ломка залеганий велась у самой поверхности с помощью выламывания породы кольями, изготовленными из крепкого дерева.

На некоторых стоянках людей позднего палеолита археологи находят самородки металла и метеоритного железа, используемые древними людьми для создания минеральных красок.

При нехватке случайно найденных самородков, древний человек целенаправленно приступал к разработке не глубоких рудных месторождений. Так например для получения красной охры из гематита, палеолитическое население в Южной Африке разрабатывало от 41 до 43 тысячелетий лет назад рудник Нгвеня, расположенный северо-западнее города Мбабане на территории современного королевства Эсватини.

Рудник Нгвеня считается самым старым в Мире, красную охру получаемую из гематита древние люди использовали в косметических и ритуальных целях.

Читайте также:  Как составить потребность на металл

В эпоху неолита с X тысячелетия до нашей эры ранние земледельцы и племена охотников-собирателей при возрастающей хозяйственной потребности и росте числа населения изобрели технологию горных разработок.

Первые неолитические шахты имели скромные размеры, например найденные археологами в Белоруссии у села Красного меловые шахты представляли собой вертикальные ямы от 2 до 6 метров глубиной, диаметром полтора метра и штреками от 1 до 2,5 метров. Мел в шахтах добывался наклонными ударами роговых мотыг с короткими рукоятками, а первоначальный вертикальный проход ям велся с помощью деревянных кольев, заостренных и обожженных на огне.

Большое количество неолитических кремниевых шахт открыто и изучено археологами на территории Западной Европе: Франции, Бельгии, Англии, Португалии, Сицилии и Швеции.

Шахтные разработки кремния традиционно начинались в местах открытого залегания необходимого материала, добыча велась с помощью роговых и кремниевых кирок, доставка породы на поверхность производилась с помощью плетеных корзин, кожаных мешков и веревок. Во многих неолитических шахтах имеются свидетельства использования древними горняками дренажа и искусственного освещения.

При неравномерном распределении ископаемых материалов в разных уголках мира для бытовых нужд кроме кремния использовались и другие добытые шахтным образом материалы: обсидиан и кварцит в Америке, сланец в Северной Европе, диорит на юге Индии и базальт на островах Океании.

Самые крупные каменоломни в Европе разрабатывались в V тысячелетии до нашей эры на территории современной Бельгии в районе валлонской деревни Спьенн. Каменоломни Спьенна входят в список Всемирного наследия ЮНЕСКО и занимают площадь около ста гектаров.

Первое знакомство человека с металлом произошло при обнаружение медных «камней», существующих в природе в виде самородков чаще, чем серебро, золото и железо. Медные «булыжники» древний человек пытался обработать, ударяя по ним другими камнями, а после достижения нужной формы шлифовал изделие до блеска.

Достаточно мягкую медь обрабатывали методом холодной ковки каменными инструментами, самое ранее известное литое изделие из меди найдено в Анатолии и относится к VI тысячелетию до нашей эры.

В V тысячелетии до нашей эры древние племена Европы стали целенаправленно добывать медь на медных месторождениях Балкано-Карпатской металлургической провинции. Наиболее древняя шахта по добыче меди «Рудна Глава» расположена на территории современной Сербии и создана представителями археологической культуры Винча.

Для изготовления холодного оружия и орудий труда пластичная медь древним человеком не использовалась, она годилась лишь для изготовления украшений и ритуальных предметов. Только когда медь сплавили с оловом, человеческая цивилизация получила бронзу и окончательно ушла от каменного века в эпоху металла.

Скорее всего, древний человек освоил бронзу одновременно в нескольких близлежащих регионах Евразии. Самые ранние бронзовые изделия, обнаруженные в Сербии и на Иранском нагорье, датируются концом V тысячелетия до нашей эры. На Кавказе и в Малой Азии бронзовые изделия появляются в lll тысячелетии до нашей эры.

Изобретение бронзы древним человеком связано с использованием гончарных печей для изготовления керамики, где температуры была выше, чем в костре и позволяла плавить тугоплавкие металлы.

К концу бронзового века в Евразии доступные месторождения олова, необходимого для производства бронзы, истощились, и человечество вынужденно было перейти от бронзы к массовому производству орудий труда из железа. Железный век наступил в разных уголках Евразии не единовременно с IX по VII век до нашей эры и продолжался до I века нашей эры.

Первые единичные находки железных изделий относятся ко временам неолита и изготовлены они из метеоритного железа.

С XII века до нашей эры выплавка железа в одноразовых сыродутных речах применялась в Индии, на Кавказе и в Малой Азии. Массовый переход от бронзы к железу при изготовлении оружия и инструментов начался на территории Малой Азии на рубеже I тысячелетия до нашей эры.

В неолите древний человек использовал в хозяйстве не только медь и железо, но и благородные металлы: золото и серебро. Первоначально благородные металлы заинтересовали человека в виде самородков, случайно найденных на поверхности открытых месторождений.

Целенаправленная добыча золота была впервые организована в VI тысячелетии до нашей эры на территории Древнего Египта. От отдельных случайных находок золотых самородков древнеегипетская цивилизация перешла к систематическому поиску и масштабной выработке россыпных и рудных месторождений.

На настоящий момент археологам известно более 45 древнеегипетских разработок с поселениями золотодобытчиков в районе высохшего в древности русла нильского правого притока Вади-Хаммамат.

На ранних этапах истории больше чем золото древним человеком ценилось серебро, так как в чистом виде серебро встречается реже чем золото. Самые ранние известные серебряные изделия производились в додинастическом Древнем Египте с VI по IV тысячелетие до нашей эры из серебра вывезенного с территории современной Сирии.

В III тысячелетии до нашей эры крупнейший центр добычи серебра в Мире находился на территории современной Греции. Древнегреческие Лаврийские рудники располагаются на площади около 200 квадратных километров и состоят из одной тысячи шахтных стволов и штолен со средней глубиной до 25 метров.

Добыча руды и камней в доисторические времена была трудной, но выполнимой задачей. Палеолитические и неолитические технологии добычи полезных ископаемых с использованием примитивных инструментов и материалов множество раз доказана на практике археологами-экспериментаторами.

Спекуляции по датировке древних рудников и гипотезы о существовании рудокопов и шахтеров возможных внеземных или неизвестных науке цивилизаций не имеют под собой ни какой доказательной базы и не заслуживают доверия и упоминания.

Дорогой, читатель! Мне важно твоё мнение о данной статье, здоровая критика в комментариях приветствуется. Спасибо за внимание.

Источник

Европейская металлургия от костра до мартена

На протяжении всей истории человечества образ хозяйствования нашей цивилизации определяли металлы. Вообще говоря, все первые металлы, открытые человечеством, стоят правее водорода в электрохимическом ряду напряжений металлов. Это так просто потому, что все остальные по закону неумолимой термодинамики будут окислены во влажных и окислительных условиях атмосферы и литосферы. Точнее говоря, те, что правее водорода, тоже будут окислены – но сильно позже. А пока что встречайте: медь, серебро, золото, сурьма!

Читайте также:  Гитарные риффы металл это


Справа все интересующие нас металлы, а заодно ртуть и платина. Не влезли палладий и висмут, но они встречаются реже метеоритов

Все эти элементы при определенной доле удачи могут быть встречены в самородном виде – неслыханное счастье для тех, кому до того предстояло пользоваться каменными орудиями труда. Металлу можно придавать почти любую форму, он не раскалывается, а деформируется при ударах, а еще его можно затачивать и делать качественно лучшие орудия труда. Золото, серебро и медь уже к позднему неолиту вовсю использовались для изготовления украшений, а в 6 тысячелетию человечество открыло для себя медные инструменты. Однако самым лучшим доступным металлом было, конечно, железо. Для того, чтобы найти его в чистом виде, нужно поистине дьявольское везение – оно встречается только в упавших метеоритах и является настоящей царской прерогативой (так, кинжал из гробницы Тутанхамона сделан именно из такого железа).

Новую веху в истории обработки металлов ознаменовала восстановительная металлургия. Люди открыли, что, если спекать некоторые минералы с углем, в камешках получившегося шлака заблестят кусочки меди. Это позволило человечеству перейти на небывало высокий по сравнению с неолитом уровень технологий. Новые медные инструменты и так были на порядок лучше каменных, но теперь они стали по-настоящему доступны. Вскоре появились первые печи для плавки меди, которые, например, можно найти в древних городах Анатолии. Так, первое найденное литое изделие датируется 5000 г. до н. э.


диаграмма Эллингема

Теперь сделаем небольшое отступление обратно к современности и обратим свои взоры на диаграмму Эллингема. Эта диаграмма показывает нам, насколько при разных температурах стабильны различные оксиды. Также она позволяет легко определить, восстановит ли углерод или угарный газ нужный оксид до металла при данной температуре – для этого всего лишь нужно посмотреть, в какой точке линия С и СО становится ниже линии соответствующего металла. Из нее можно понять, например, что даже при небольшом нагревании и углеродом, и угарным газом медь восстановится со свистом, а вот чтобы восстановить железо, придется хорошенько постараться (но все же меньше, чем для многих других металлов).

Проблема состоит не только в этом. Мало просто восстановить металл, необходимо его еще и расплавить, иначе вместо слитка, которому можно придать любую форму, получится просто серый (в случае железа) или красный (в случае меди) порошок. Поэтому для эффективного изготовления железных изделий нужна такая печь, которая сможет расплавить железо. Однако построить ее не так-то просто, первые железоделательные печи появились на территории той же Анатолии у хеттов примерно к 1200 г. до н. э. До этого человечество обходилось медью или бронзой – сплавом меди с мышьяком или оловом (бронза была попрочнее меди, дольше изнашивалась и плавилась при меньшей температуре).


Сыродутная печь

Такие требования сформировали облик европейской железной металлургии на многие века. Схема печи оставалась общей: высокая глиняная/земляная труба, в которой вперемежку уложены слои железной руды (как правило, болотной бурой слизи или каменной руды) и древесный уголь. Все это мероприятие было крайне малопрофитным в смысле целевого продукта, в железо превращалось около 30% руды в лучшем случае. Несмотря на это, железные орудия были на порядок выгоднее орудия из любого другого металла, доступного европейцам, из-за не в пример большего качества.

Описанный выше способ выплавки железа назывался сыродутным. Получившийся кусок железа содержал крайне большое количество шлаков, поэтому его проковывали большое количество раз. При этом получившееся железо обладало существенным недостатком. При получении оно было крайне твердым и незатачиваемым (так как содержало большое количество углерода), а при дальнейшем выгорании – очень мягким. Поэтому единственным способом получить нормальное, функциональное изделие было сваривание нескольких пакетов железа методом проковки сложенных слоев железа, просыпанных между собой бурой. Усовершенствовав технологи многократной проковки заготовки до предела и чередуя мягкие и твердые слои железа, человечество научилось изготавливать булатную сталь – один из лучших видов металлургической продукции своего времени.

Одним из основных шлаков в металлургическом производстве Средневековья был чугун. Он выплавлялся из руды раньше всех, потому что в нем больше углерода, а, чем больше в каком-либо твердом веществе примеси, тем ниже его температура плавления. Также чугун крайне хрупок и тяжел, что затрудняло его применение в металлургии. Довольно большая часть железа всегда уходила в шлаки в виде чугуна, откуда его было уже не выдернуть. В больших по размеру печах (штукофенах и блауофенах) с четырех-пятиметровыми «резервуарами» для руды и угля в чугун и шлак уходило просто огромное количество железа. Обычно из чугуна потом изготавливали низкотехнологические изделия типа кувалд, ядер и прочего. Забавный факт – и по сей день шлаки металлургического производства используются в дорожном строительстве как материал для брусчатки.


Схема современной доменной печи

Следующей вехой развития железного производства стали доменные печи. Человечество догадалось, что, если печь сделать достаточно большой, можно будет подбрасывать в нее уголь и руду прямо в процессе плавки, а железо, сталь, чугун и шлаки сливать из нее через отдельные летки. Этот процесс в 15-16 вв. стал очередным технологическим бумом для Европы – несмотря на то, что доменную печь нельзя было останавливать, а угля и руды она жрала абсолютно непомерное количество, она позволила европейцам превзойти весь мир по выплавке металла на душу населения, а, следовательно, по артиллерийской мощи.

С учетом роста населения и постоянно растущего спроса на железо его производство на душу населения в 11-13 вв. достигало порядка килограмма на человека в год. Для сравнения – современный небольшой ножик весит порядка 200 граммов, лезвие небольшого топора – около 700 граммов, а ведь еще нужно на чем-то готовить, чем-то строить, опять же всяческие метизы типа гвоздей, скоб, крюков и прочего. В итоге мы понимаем, что уровень сыродутной металлургии даже с учетом перекрытия некоторых потребностей другими металлами давал ужасающе мало.

Читайте также:  Код оквэд обработка лома черных металлов

Ситуация менялась, как ни парадоксально, с увеличением количества металлических изделий – можно было срубать больше деревьев, прокапывать более глубокие шахты, возводить более сложные конструкции. Производство росло в геометрической прогрессии – размер печей для выплавки железа все увеличивался, увеличивался от простой сыродутной печи к штукофену и блауофену и наконец-то вырос до настоящей домны с непрерывным циклом выплавки. И тут понеслась – положительная обратная связь сделала свое дело.

Всеевропейское внедрение в 15-16 веках доменной печи сразу, буквально за несколько десятилетий, увеличило количество производимого на душу населения железа втрое, а то и вчетверо. Нашей цивилизации впервые стали по-настоящему доступны каменные железные руды. Забегая вперед, скажу, что в Швеции, стране, которая на тот момент поставляла больше половины всего европейского железа, к 18 веку производство достигло невероятных 20 кг железа на человека. Впрочем, до обогащения и прочих технологических процессов мы пока еще не дошли – пока что это просто загрузка печи камнями руды, углем и флюсом – специальным веществом, чтобы снизить количество примесей в плаве и уменьшить температуру плавления.

Проблемой доменного производства была необходимость в огромном количестве качественного древесного угля – каменный уголь содержал много вредных для железа примесей, поэтому деревья приходилось вырубать в огромных масштабах. Об экологии тогда никто не заботился, но бескрайние леса были, очевидно, не во всех странах. Также откровенным минусом все еще был уход огромного количества железа в чугун, хрупкий и потому не годный для создания инструментов и метизов. Единственной масштабной отраслью применения чугуна было артиллерийское дело – на отливку пушек и ядер шли многие тонны чугуна. И вот тут человечество сделало пока чисто эмпирическое, но очень важное открытие – из чугуна при высокой температуре может выгорать углерод. Естественно, ни о каком углероде речь тогда не шла, но этот факт позволил железоделательному производству перейти еще на один технологический уровень выше.

Все помнят, как в морозилке замерзает соленая вода? Образуется большая ледышка, самого рассола становится меньше, концентрация соли в нем растет. Похожий процесс происходит и при плавлении чугуна на воздухе. Углерод из него частично выгорает, частично переходит в жидкую фазу, а на дне печи начинают образовываться кристаллы железа. Это явление заметил английский металлург Генри Корт, и вскоре практика пудлингования – перемешивания расплава чугуна вошла в Британии в крайне широкое распространение.


Печь для пудлингования. 1) Под 2) Труба с клапаном для регулирования силы тяги 3) Порог, отделяющий металл в рабочем объёме от топлива 4) Колосниковая решётка, на которой находится горящее топливо (уголь) 5) Боковое окно для пудлинговщика 6) Окно для заброса топлива

Как происходило пудлингование? Сначала в печи, обложенной огнеупорной футеровкой (отделка печи, позволяющая оградить тело печи от разрушительного влияния расплавов) без доступа открытого пламени расплавлялся чугун. По прошествии некоторого времени рабочие засовывали в расплав огромные железные штанги (около 40 килограммов весом) и начинали интенсивно перемешивать его. Вскоре на штангах выкристаллизовывалось чистое железо, температура плавления которого намного выше, чем у чугуна. Далее получившуюся крицу вынимали из расплава, проковывали и разделяли на слитки.

Естественно, процесс этот был далеко не из самых легких, однако он позволил высвободить для промышленности огромное количество чистого железа и разом решить проблему переизбытка чугуна. Процесс пудлингования доминировал в металлургии на протяжении практически ста лет, после чего был вытеснен сразу тремя способами – бессемеровским (открытым Генри Бессемером в 1856 году), томасовским (открытым в 1878 году Сидни Гилкристом Томасом) и мартеновским.


Принцип работы любого конвертера

Бессемеровский и томасовский процессы довольно схожи. В качестве основного реактора используется веретенообразная печь с огнеупорной футеровкой (в случае бессемеровского процесса – кислой, содержащей SiO2, в случае томасовского – основной, содержащей доломит CaCO3xMgCO3). В процессе плавки печь нагревается, опять же, без доступа открытого пламени, после чего продувается сжатым воздухом через сопла, расположенные в дне печи. Расплав поддерживается в горячем состоянии из-за процесса окисления примесей руды, проходящего с выделением температуры. Далее полученное железо подвергается дополнительному науглероживанию с образованием стали. Основное отличие двух способов состоит в химическом составе плава.

В томасовском процессе могут быть использованы загрязненные серой и фосфором руды – продукты окисления фосфора и серы связываются материалом футеровки, давая окисляющий железо углекислый газ. У этого способа есть недостаток – фосфор и сера удаляются из плава не в полном объеме, поэтому железо получается более ломким. В бессемеровском же процесса футеровка печи не позволяет использовать основные флюсы, что делает его более требовательным к качеству руды. Однако этот способ дает более качественное железо, что и определило его производственное преимущество в долгосрочной перспективе.

Настало время сказать несколько слов и про мартеновский процесс. Он был открыт в 1864 году французским инженером Пьером Мартеном. Основное его отличие от бессемеровского и томасовского способов состоит в том, что газообразное топливо (обычно природный газ или коксовый газ) подаются прямо в зону плавки, где расплавляют чугун и одновременно окисляют его. Мартеновский процесс получил особенно широкое распространение в качестве способа передельной металлургии, которая использует для выплавки новой стали железный лом.

Сейчас практически все процессы старины глубокой (кроме доменной выплавки, конечно) уже ушли в прошлое. Их заместили новые гиганты – конвертерно-кислородный (переиначенный бессемеровский) и электродуговой способы выплавки стали. Однако история их, как мне кажется, довольно увлекательна, чтобы помнить ее и интересоваться ей.


Божественно прекрасный томасовский конвертер

Автор: Павел Ильчук

VPS серверы от Маклауд быстрые и безопасные.

Зарегистрируйтесь по ссылке выше или кликнув на баннер и получите 10% скидку на первый месяц аренды сервера любой конфигурации!

Источник

Поделиться с друзьями
Металл