Отношения работ выхода электронов для металлов

Вопрос. Работа выхода электрона из металла. Эмиссионные явления.

1) Формула работа выхода электронов

В металлах имеются электроны проводимости, образующие электронный газ и участвующие в тепловом движении. Так как электроны проводимости удерживаются внутри металла, то, следовательно, вблизи поверхности существуют силы, действующие на электроны и направленные внутрь металла. Чтобы электрон мог выйти из металла за его пределы, должна быть совершена определенная работа А против этих сил, которая получила название работа выхода электрона из металла. Эта работа, естественно, различна для разных металлов.

Потенциальная энергия электрона внутри металла постоянна и равна:

Wp = -eφ,где j – потенциал электрического поля внутри металла.

При переходе электрона через поверхностный электронный слой потенциальная энергия быстро уменьшается на величину работы выхода и становится вне металла равной нулю. Распределение энергии электрона внутри металла можно представить в виде потенциальной ямы.

В рассмотренной выше трактовке работа выхода электрона равна глубине потенциальной ямы, т.е.

Этот результат соответствует классической электронной теории металлов, в которой предполагается, что скорость электронов в металле подчиняется закону распределения Максвелла и при температуре абсолютного нуля равна нулю. Однако в действительности электроны проводимости подчиняются квантовой статистике Ферми-Дирака, согласно которой при абсолютном нуле скорость электронов и соответственно их энергия отлична от нуля.

Максимальное значение энергии, которой обладают электроны при абсолютном нуле, называется энергией Ферми EF . Квантовая теория проводимости металлов, основанная на этой статистике, дает иную трактовку работы выхода. Работа выхода электрона из металла равна разности высоты потенциального барьера eφ и энергии Ферми.

где φ’ – среднее значение потенциала электрического поля внутри металла.

2)Работа выхода электронов из металла — работа, которую нужно затратить для удаления электрона из металла в вакуум. Работа выхода зависит от химической природы металлов и от чистоты их поверхности. Подобрав определенным образом покрытие поверхности, можно значительно изменить работу выхода.

Работа выхода выражается в электрон-вольтах (эВ):1эВ равен работе, которую совершают силы поля при перемещении элементарного электрического заряда между точками разность потенциалов между которыми равна 1В. Так как e 1,610–19 Кл, то 1эВ=1,610–19 Дж.

Электронная эмиссия —явление испускания электронов из металлов при сообщении электронам энергии, равной или большей работы выхода.

1. Термоэлектронная эмиссия — испускание электронов нагретыми металлами. Пример использования – электронные лампы.

2. Фотоэлектронная эмиссия — эмиссия электронов из металла под действием электромагнитного излучения. Пример использования — фотодатчики.

3. Вторичная электронная эмиссия — испускание электронов поверхностью металлов, полупроводников или диэлектриков при бомбардировке их пучком электронов. Отношение числа вторичных электронов n2 к числу первичных n1 , вызвавших эмиссию, называется коэффициентом вторичной электронной эмиссии:n2 n1 . Пример использования — фотоэлектронные умножители.

4. Автоэлектронная эмиссия — эмиссия электронов с поверхности металлов под действием сильного внешнего электрического поля.

5 Вопрос. Электрический ток в вакууме (объяснение ВАХ вакуумного диода).

Что такое вакуум?
— это такая степень разрежения газа, при которой соударений молекул практически нет;

— электрический ток невозможен, т.к. возможное количество ионизированных молекул не может обеспечить электропроводность;
— создать эл.ток в вакууме можно, если использовать источник заряженных частиц;
— действие источника заряженных частиц может быть основано на явлении термоэлектронной эмиссии.

Термоэлектронная эмиссия
— это испускание электронов твердыми или жидкими телами при их нагревании до температур, соответствующих видимому свечению раскаленного металла.
Нагретый металлический электрод непрерывно испускает электроны, образуя вокруг себя электронное облако.
В равновесном состоянии число электронов, покинувших электрод, равно числу электронов, возвратившихся на него ( т.к. электрод при потере электронов заряжается положительно).
Чем выше температура металла, тем выше плотность электронного облака.

Вакуумный диод
Электрический ток в вакууме возможен в электронных лампах.
Электронная лампа — это устройство, в котором применяется явление термоэлектронной эмиссии.

Вакуумный диод — это двухэлектродная ( А- анод и К — катод ) электронная лампа.
Внутри стеклянного баллона создается очень низкое давление


Н — нить накала, помещенная внутрь катода для его нагревания. Поверхность нагретого катода испускает электроны. Если анод соединен с + источника тока, а катод с -, то в цепи протекает
постоянный термоэлектронный ток. Вакуумный диод обладает односторонней проводимостью.
Т.е. ток в аноде возможен, если потенциал анода выше потенциала катода. В этом случае электроны из электронного облака притягиваются к аноду, создавая эл.ток в вакууме.

Читайте также:  Металл немагнитный твердый тяжелый

Вольтамперная характеристика вакуумного диода.

При малых напряжениях на аноде не все электроны, испускаемые катодом, достигают анода, и электрический ток небольшой. При больших напряжениях ток достигает насыщения, т.е. максимального значения.
Вакуумный диод используется для выпрямления переменного тока.
Ток на входе диодного выпрямителя:


Ток на выходе выпрямителя:

Электронные пучки
— это поток быстро летящих электронов в электронных лампах и газоразрядных устройствах.
Свойства электронных пучков:
— отклоняются в электрических полях;
— отклоняются в магнитных полях под действием силы Лоренца;
— при торможении пучка, попадающего на вещество возникает рентгеновское излучение;
— вызывает свечение ( люминисценцию ) некоторых твердых и жидких тел ( люминофоров );
— нагревают вещество, попадая на него.

Электронно — лучевая трубка ( ЭЛТ )
— используются явления термоэлектронной эмиссии и свойства электронных пучков.

ЭЛТ состоит из электронной пушки, горизонтальных и вертикальных отклоняющих
пластин-электродов и экрана.
В электронной пушке электроны, испускаемые подогревным катодом, проходят через управляющий электрод-сетку и ускоряются анодами. Электронная пушка фокусирует электронный пучок в точку и изменяет яркость свечения на экране. Отклоняющие горизонтальные и вертикальные пластины позволяют перемещать электронный пучок на экране в любую точку экрана. Экран трубки покрыт люминофором, который начинает светиться при бомбардировке его электронами.
Существуют два вида трубок:
1) с электростатическим управлением электронного пучка (отклонение эл. пучка только лишь эл.полем);
2) с электромагнитным управлением ( добавляются магнитные отклоняющие катушки ).
Основное применение ЭЛТ:
кинескопы в телеаппаратуре;
дисплеи ЭВМ;
электронные осциллографы в измерительной технике.

6 Вопрос. Электрический ток в газах (ВАХ газового разряда). Несамостоятельный и самостоятельный разряд.

В обычных условиях газ — это диэлектрик, т.е. он состоит из нейтральных атомов и молекул и не содержит свободных носителей эл.тока.
Газ-проводник — это ионизированный газ. Ионизированный газ обладает электронно-ионной проводимостью.

Воздух является диэлектриком в линиях электропередач, в воздушных конденсаторах, в контактных выключателях.

Воздух является проводником при возникновении молнии, электрической искры, при возникновении сварочной дуги.

Ионизация газа


— это распад нейтральных атомов или молекул на положительные ионы и электроны путем отрыва электронов от атомов. Ионизация происходит при нагревании газа или воздействия излучений (УФ, рентген, радиоактивное) и объясняется распадом атомов и молекул при столкновениях на высоких скоростях.

Газовый разряд
— это эл.ток в ионизированных газах.
Носителями зарядов являются положительные ионы и электроны. Газовый разряд наблюдается в газоразрядных трубках (лампах) при воздействии электрического или магнитного поля.

Рекомбинация заряженных частиц


— газ перестает быть проводником, если ионизация прекращается, это происходит в следствие рекомбинации ( воссоединения противоположно заряженных частиц).

Существует самостоятельный и несамостоятельный газовый разряд.

Несамостоятельный газовый разряд
— если действие ионизатора прекратить , то прекратится и разряд.

Когда разряд достигает насыщения — график становится горизонтальным. Здесь электропроводность газа вызвана лишь действием ионизатора.

Самостоятельный газовый разряд
— в этом случае газовый разряд продолжается и после прекращения действия внешнего ионизатора за счет ионов и электронов, возникших в результате ударной ионизации ( = ионизации эл. удара); возникает при увеличении разности потенциалов между электродами ( возникает электронная лавина).
Несамостоятельный газовый разряд может переходить в самостоятельный газовый разряд при Ua = Uзажигания.

7 Вопрос. Механизм возникновения самостоятельного газового разряда.

Чтобы разряд стал самостоятельным, каждый вырванный с катода электрон в результате цепочки взаимодействий должен вырвать с катода по крайней мере еще 1 электрон. Вспомним, что при ионизации атома электроном помимо свободного электрона возникает еще и ион, который движется под действием поля в противоположном электронам направлении – к катоду. В результате столкновения иона с катодом с последнего может быть эмитирован электрон (этот процесс называется вторичной электронной эмиссией). Сам механизм соответствует темному самостоятельному разряду. То есть при таких условиях не происходит генерация излучения. Падающий характер этого участка объясняется тем, что при больших токах нужны меньшие энергии электронов для сохранения самостоятельности разряда и, следовательно, меньшие ускоряющие поля.

Типы самостоятельного разряда. Техническое применение
1. Тлеющий разряд. Применяется в газосветных трубках, неоновых лампах, циф­ровых индикаторах, лампах дневного света, ртутных лампах низкого давления.
a. Несветящаяся часть, прилегающая к катоду, наз. темным катодным пространством, b. Светящийся столб газа, заполняющий остальную часть, наз. анодным положительным столбом. При определенных давлениях анодный столб распадается на отдельные слои, разделенные темными промежутками (страты). Причиной ионизации газа в тлеющем разряде является ударная ионизация и выбивание электронов из катода положительными ионами.
2. Дуговой разряд. Применяется в ртутных лампах высокого давления, источниках света, при сварке металлов, в электроплавильных печах, при электролизе расплавов, в электропечах.
3. Коронный разряд Высокая напряженность. Используют в электрофиль­трах для очистки газов от при­месей твердых частиц. Применяется в счетчиках заряженных частиц Гейгера-Мюллера. Громоотвод. Отрица­тельное явление: вызывает утеч­ку энергии на высоковольтных линиях.
4. Искровой разряд Высокое напряжение. Применяется при обработке металлов. Молния: U=10 8 В,I=10 5 А, продолжительность 10 -6 с, диаметр канала 10 — 20 см.
Читайте также:  Давление пара от температуры металлы

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

Источник

Работа выхода электронов из металлов, не металлов и неорганических соединений (Таблица)

Формула работа выхода электронов

В металлах имеются электроны проводимости, образующие электронный газ и участвующие в тепловом движении. Так как электроны проводимости удерживаются внутри металла, то, следовательно, вблизи поверхности существуют силы, действующие на электроны и направленные внутрь металла. Чтобы электрон мог выйти из металла за его пределы, должна быть совершена определенная работа А против этих сил, которая получила название работа выхода электрона из металла. Эта работа, естественно, различна для разных металлов.

Потенциальная энергия электрона внутри металла постоянна и равна:

Wp = -eφ , где j – потенциал электрического поля внутри металла.

При переходе электрона через поверхностный электронный слой потенциальная энергия быстро уменьшается на величину работы выхода и становится вне металла равной нулю. Распределение энергии электрона внутри металла можно представить в виде потенциальной ямы.

В рассмотренной выше трактовке работа выхода электрона равна глубине потенциальной ямы, т.е.

Этот результат соответствует классической электронной теории металлов, в которой предполагается, что скорость электронов в металле подчиняется закону распределения Максвелла и при температуре абсолютного нуля равна нулю. Однако в действительности электроны проводимости подчиняются квантовой статистике Ферми-Дирака, согласно которой при абсолютном нуле скорость электронов и соответственно их энергия отлична от нуля.

Максимальное значение энергии, которой обладают электроны при абсолютном нуле, называется энергией Ферми EF . Квантовая теория проводимости металлов, основанная на этой статистике, дает иную трактовку работы выхода. Работа выхода электрона из металла равна разности высоты потенциального барьера eφ и энергии Ферми.

где φ’ – среднее значение потенциала электрического поля внутри металла.

Таблица работа выхода электронов из простых веществ

В таблице приведены значения работы выхода электронов, относящихся к поликристаллическим образцам, поверхность которых очищена в вакууме прокаливанием или механической обработкой. Недостаточно надежные данные заключены в скобки.

Источник

Работа фпэ-06. Определение работы выхода электронов из металла

Цель работы: построение и изучение вольт-амперной характеристики диода; исследование зависимости плотности тока насыщения термоэмиссии от температуры катода и определение работы выхода электрона из вольфрама методом прямых Ричардсона.

Краткое теоретическое введение

Свойства металлов в значительной степени определяются состоянием электронов проводимости, т.е. электронов, способных перемещаться в металле.

Распределение энергии электрона для органического металла изображено на энергетической диаграмме (рис.6.1). За нулевую энергию здесь выбрана энергия свободного электрона вне металла с кинетической энергией, равной нулю.

Пунктиром изображены незанятые энергетические уровни при Т=0 К. Энергетические уровни электронов обозначены тонкими горизонтальными линиями, заполняющими интервал энергий от дна потенциальной ямы до энергии ЕF. EF – энергия Ферми, то есть максимальная кинетическая энергия которой может обладать электрон при Т=0 К.

Электронам, находящимся в потенциальной яме на разных уровнях энергии, для выхода за пределы металла необходимо сообщать разную энергию. Минимальная кинетическая энергия, необходимая для удаления электрона из металла,

(6.1)

называется работой выхода электрона из металла в вакуум при Т=0 К.

Рис. 6.1. Распределение энергии электрона на энергетический диаграмме.

Рис. 6.2. Применение «метода электрического изображения»

При температуре К электроны находятся в тепловом равновесии, поэтому к энергии Ферми прибавляется еще некоторая тепловая энергия. Величина работы выхода зависит от состояния поверхности металла. Положение уровня Ферми при нагреве металла вплоть до расплавления практически не меняется, но при этом возникает некоторое число (небольшой процент) быстрых электронов, которые способны преодолеть работу выхода и выйти из металла.

Читайте также:  Гравировка на металле медаль

Рассмотрим природу сил, препятствующих выходу электронов из металла и образующих работу выхода . Отдельные электроны проводимости, двигаясь внутри металла с большими скоростями, могут пересекать поверхность металла. Вылетевший из металла электрон удаляется от поверхности до тех пор, пока кулоновское взаимодействие с избыточным положительным зарядом, возникшим на месте, которое покинул электрон, не заставит его вернуться обратно.

Постоянно одни электроны «испаряются» с поверхности металла, другие возвращаются обратно. Поэтому металл оказывается окутанным облаком электронов, образующих совместно с наружным слоем положительных ионов двойной электрический слой, подобно плоскому конденсатору. Поле двойного слоя препятствует выходу электронов из металла.

Другой силой, препятствующий выходу электрона из металла, является кулоновская сила индуцированного им положительного заряда (рис. 6.2). Эта сила носит название «силы электрического изображения», так как действие распределенного по поверхности проводника заряда эквивалентно действию равного по величине положительного заряда, являющегося зеркальным изображением электрона в плоскости РР. Оба этих физических процесса и определяют величину . При комнатной температуре практически все свободные электроны заперты, в пределах проводника, имеется лишь небольшое количество электронов, энергия которых достаточна для того, чтобы преодолеть потенциальный барьер и выйти из металла.

Однако электронам можно различными способами сообщить дополнительную энергию. В этом случае часть электронов получает возможность покинуть металл и наблюдается испускание электронов – электронная эмиссия. В зависимости от того, каким способом сообщена электронам энергия, различают типы электронной эмиссии. Если электроны получают энергию за счет тепловой энергии тела при повышении его температуры, можно говорить о термоэлектронной эмиссии. Если энергия подводится светом, имеем явление фотоэмиссии. Если энергия сообщается электронам при бомбардировке извне какими-то другими частицами, наблюдается вторичная эмиссия.

Для наблюдения термоэлектронной эмиссии можно использовать пустотную лампу, содержащую два электрода: накаливаемый током катод и холодный электрод, собирающий термоэлектроны — анод. Такие лампы носят название вакуумных диодов. На рис. 6.3 изображена схема включения такого диода. Ток в этой цепи появляется только в том случае, если положительный полюс батареи соединен с анодом, а отрицательный-с катодом. Это подтверждает, что катод испускает отрицательные частицы, электроны. Сила термоэлектронного тока в диоде зависит от величины потенциала анода относительного катода.

Рис. 6.3. Схема включения диода.

Рис. 6.4. Вольт — амперная характеристика диода

Кривая, изображающая зависимость силы тока в диоде от анодного напряжения, называется вольт-амперной характеристикой.

На рис. 6.4 показаны вольт-амперные характеристики диода при разных температурах катода. Когда потенциал анода равен нулю, сила тока мала, она определяется лишь самыми быстрыми термоэлектронами, способными достигнуть анода. При увеличения положительного потенциала анода сила тока возрастает и затем достигает насыщения, т.е. почти перестает зависеть от анодного напряжения.

При увеличении температуры катода увеличивается и значение тока, при котором достигается насыщение. Одновременно увеличивается и то анодное напряжение, при котором устанавливается ток насыщения.

Таким образом, вольт-амперная характеристика диода оказывается нелинейной, т.е. не выполняется закон Ома. Это объясняется тем, что при термоэлектронной эмиссии у поверхности катода создается довольно большая плотность электронов. Они создают общий отрицательный заряд, и электроны, вылетающие с малой скоростью, не могут его проскочить. С увеличением анодного напряжения концентрация электронов в облаке пространственного заряда уменьшается. Поэтому и тормозящее действие пространственного заряда делается меньше, а анодный ток растет быстрее, чем в прямой зависимости от анодного напряжения.

Теоретически зависимость анодного тока от анодного напряжения на участке 1-2 была получена Ленгмюром и Богуславским. Она называется еще «законом трех вторых».

По мере роста анодного напряжения все больше электронов, вылетевших из катода, отсасывается к аноду. При определенном значении все вылетевшие из катода за единицу времени электроны достигают анода. Дальнейший рост анодного напряжения не может увеличить силу анодного тока, поскольку достигается насыщение.

Максимальный термоэлектронный ток, возможный при данной температуре катода, называется током насыщения.

При повышении температуры увеличивается скорость хаотического движения электронов в металле. При этом число электронов, способных покинуть металл, резко возрастает. Плотность тока насыщения, т.е. сила тока насыщения на каждую единицу поверхности катода S, вычисляется по формуле Ричардсона-Дешмена:

(6.2)

где — постоянная эмиссии,k-постоянная Больцмана, =1,38 10 -23 Дж/К. Плотность тока насыщения характеризует эмиссионную способность катода, которая зависит от природы катода и его температуры.

Источник

Поделиться с друзьями
Металл
Adblock
detector