Основы резания металлов реферат

Реферат: Обработка резанием

Обработка резанием является универсальным методом размерной обработки. Метод позволяет обрабатывать поверхности деталей различной формы и размеров с высокой точностью из наиболее используемых конструкционных материалов. Он обладает малой энергоемкостью и высокой производительностью. Вследствие этого обработка резанием является основным, наиболее используемым в промышленности процессом размерной обработки деталей.

Сущность и схемы способов обработки

Обработка резанием — это процесс получения детали требуемой геометрической формы, точности размеров, взаиморасположения и шероховатости поверхностей за счет механического срезания с поверхностей заготовки режущим инструментом материала технологического припуска в виде стружки (рис. 1.1).

Основным режущим элементом любого инструмента является режущий клин (рис. 1.1, а). Его твердость и прочность должны существенно превосходить твердость и прочность обрабатываемого материала, обеспечивая его режущие свойства. К инструменту прикладывается усилие резания, равное силе сопротивления материала резанию, и сообщается перемещение относительно заготовки со скоростью ν. Под действием приложенного усилия режущий клин врезается в заготовку и, разрушая обрабатываемый материал, срезает с поверхности заготовки стружку. Стружка образуется в результате интенсивной упругопластической деформации сжатия материала, приводящей к его разрушению у режущей кромки, и сдвигу в зоне действия максимальных касательных напряжений под углом φ. Величина φ зависит от параметров резания и свойств обрабатываемого материала. Она составляет

30° к направлению движения резца.

Внешний вид стружки характеризует процессы деформирования и разрушения материала, происходящие при резании. Различают четыре возможных типа образующихся стружек: сливная, суставчатая, элементная и стружка надлома (рис. 1.1, б).

Рис. 1.1. Условная схема процесса резания:

а – 1 – обрабатываемый материал; 2 – стружка; 3 – подача смазочно-охлаждающих средств; 4 – режущий клин; 5 – режущая кромка; φ – угол сдвига, характеризующий положение условной плоскости сдвига (П) относительно плоскости резания; γ – главный передний угол режущего клина; Рz – сила резания; Рy – сила нормального давления инструмента на материал; Сγ u , Сγ l – длины пластичного и упругого контактов; Сγ , Сa – длина зон контактного взаимодействия по передней и задней поверхностям инструмента; LOM – область главного упругопластичного деформирования при стружкообразовании; FKPT – область вторичной контактной упруго–пластичнеской деформации металла; h – глубина резания; Н – толщина зоны пластического деформирования (наклепа) металла.

В процессе резания режущий клин, испытывая интенсивное трение, контактирует с материалом стружки и обработанной поверхностью в контактных зонах. Для снижения сил трения и нагрева инструмента применяют принудительное охлаждение зоны резания смазочно-охлаждающими средами (СОС), подавая их в зону резания специальными устройствами.

Детали и инструменты закрепляются в специальных органах станка или приспособлениях. Станок, приспособление, инструмент и деталь образуют силовую систему (СПИД), передающую усилие и движение резания от привода станка режущему инструменту и детали.

Реальные схемы различных способов обработки резанием, используемый инструмент, а также виды движения инструмента и заготовки в процессе обработки приведены на рис. 1.2. В зависимости от используемого типа инструмента способы механической обработки подразделяются на лезвийную и абразивную.

Рис. 1.2. Схемы способов обработки резанием:

а – точение; б – сверление; в – фрезерование; г – строгание; д – протягивание; е – шлифование; ж – хонингование; з – суперфиниширование; Dr – главное движение резания; Ds – движение подачи; Ro – обрабатываемая поверхность; R – поверхность резания; Rоп – обработанная поверхность; 1 – токарный резец; 2 – сверло; 3 – фреза; 4 – строгальный резец; 5 – протяжка; 6 – абразивный круг; 7 – хон; 8 – бруски; 9 – головка.

Отличительной особенностью лезвийной обработки является наличие у обрабатываемого инструмента остройрежущей кромки определенной геометрической формы, а для абразивной обработки – наличие различным образом ориентированных режущих зерен абразивного инструмента, каждое из которых представляет собой микроклин.

Рис. 1.3. Конструкция и элементы лезвийных режущих инструментов:

а – токарного резца; б – фрезы; в – сверла;

1 – главная режущая кромка; 2 – главная задняя поверхность; 3 – вершина лезвия; 4 – вспомогательная задняя поверхность лезвия; 5 – вспомогательная режущая кромка; 6 – передняя поверхность; 7 – крепежная часть инструмента.

Рассмотрим конструкцию лезвийных инструментов, используемых при резании (рис. 1.3). Инструмент состоит из рабочей части, включающей режущие лезвия, образующие их поверхности, режущие кромки и крепежной части, предназначенной для установки и закрепления в рабочих органах станка.

Основными способами лезвийной обработки являются точение, сверление, фрезерование, строгание и протягивание. К абразивной обработке относятся процессы шлифования, хонингования и суперфиниша. В основу классификации способов механической обработки заложен вид используемого инструмента и кинематика движений. Так, в качестве инструмента при точении используются токарные резцы, при сверлении – сверла, при фрезеровании – фрезы, при строгании – строгальные резцы, при протягивании – протяжки, при шлифовании – шлифовальные круги, при хонинговании – хоны, а при суперфинише – абразивные бруски. Любой способ обработки включает два движения (рис. 1.2.): главное – движене резания Dr – и вспомогательное – движение подачи Ds . Главное движение обеспечивает съем металла, а вспомогательное – подачу в зону обработки следующего необработанного участка заготовки. Эти движения осуществляются за счет перемещения заготовки или инструмента. Поэтому при оценках движение инструмента во всех процессах резания удобно рассматривать при неподвижной заготовке как суммарное (рис. 1.4).

Рис. 1.4. Схемы определения максимальной скорости режущей кромки инструмента υе , формы поверхности резания R и глубины резания h при обработке:

а – точением; б – сверлением; в – фрезерованием; г – строганием; д– протягиванием; е – хонингованием; ж – суперфинишированием.

Тогда полная скорость перемещения (ve ) произвольной точки Мрежущей кромки складывается из скорости главного движения (v) и скорости подачи (vs ):

Поверхность резания R представляет собой поверхность, которую описывает режущая кромка или зерно при осуществлении суммарного движения, включающего главное движение и движение подачи. При точении, сверлении, фрезеровании, шлифовании поверхности резания — пространственные линейчатые, при строгании и протягивании — плоские, совпадающие с поверхностями главного движения; при хонин-говании и суперфинишировании они совпадают с поверхностями главного движения.

Поверхности Ro и Ro п называются, соответственно, обрабатываемой поверхностью заготовки и обработанной поверхностью детали (см. рис. 1.2).

В процессах точения, сверления, фрезерования и шлифования главное движение и движение подачи выполняются одновременно, а в процессах строгания, хонингования движение подачи выполняется после главного движения.

2. Параметры технологического процесса резания

К основным параметрам режима резания относятся скорость главного движения резания, скорость подачи и глубина резания.

Скорость главного движения резания (или скорость резания) определяется максимальной линейной скоростью главного движения режущей кромки инструмента. Эта скорость выражается в м/с.

Если главное движение резания вращательное, как при точении, сверлении, фрезеровании и шлифовании, то скорость резания будет определяться линейной скоростью главного движения наиболее удаленной от оси вращения точки режущей кромки — максимальной линейной скоростью главного движения (см. рис. 1.4):

где D — максимальный диаметр обрабатываемой поверхности заготовки, определяющий положение наиболее удаленной от оси вращения точки режущей кромки, м; ω — угловая скорость, рад/с.

Выразив угловую скорость ω через частоту вращения шпинделя станка, получим:

При строгании и протягивании скорость резания v определяется скоростью перемещения строгального резца и протяжки в процессе резания относительно заготовки.

При хонинговании и суперфинишировании скорость резания определяется с учетом осевого перемещения (см. рис. 1.4, е, ж) инструмента.

Скорость резания оказывает наибольшее влияние на производительность процесса, стойкость инструмента и качество обработанной поверхности.

Подача инструмента определяется ее скоростью vs . В технологических расчетах параметров режима при точении, сверлении, фрезеровании и шлифовании используется понятие подачи на один оборот заготовки So и выражается в мм/об. Подача на оборот численно соответствует перемещению инструмента за время одного оборота:

При строгании подача определяется на ход резца. При шлифовании подача может указываться на ход или двойной ход инструмента. Подача на зуб при фрезеровании определяется числом зубьев Z инструмента и подачей на оборот:

Глубина резания А определяется расстоянием по нормали от обработанной поверхности заготовки до обрабатываемой, мм. Глубину резания задают на каждый рабочий ход инструмента. При точении цилиндрической поверхности глубину резания определяют как полуразность диаметров до г: после обработки:

где d — диаметр обработанной поверхности заготовки, мм. Величина подачи и глубина резания определяют производительность процесса и оказывают большое влияние на качество обрабатываемой поверхности.

К технологическим параметрам процесса относятся геометрия режущего инструмента, силы резания, производительность обработки и стойкость инструмента.

Геометрические параметры режущего инструмента определяются углами, образуемыми пересечением поверхностей лезвия, а также положением поверхностей режущих лезвий относительно обрабатываемой поверхности и направлением главного движения. Указанные параметры идентичны для различных видов инструмента, что позволяет рассмотреть их на примере резца, используемого при точении.

Углы резца по передним и задним поверхностям измеряют в определенных координатных плоскостях. На рис. 2.1, а изображены координатные плоскости при точении, а на рис. 2.1, б углы резца в статике.

Главный передний угол γ — угол между передней поверхностью лезвия и плоскостью, перпендикулярной к плоскости резания; главный задний угол α – угол между задней поверхностью лезвия и плоскостью резания; угол заострения β – угол между передней и задней поверхностями. Из принципа построения углов следует, что

Угол наклона режущей кромки X — угол в плоскости резания между режущей кромкой и основной плоскостью.

Углы в плане: главный угол в плане φ – угол в основной плоскости между следом плоскости резания и направлением продольной подачи; вспомогательный угол в плане φ’ – угол в основной плоскости между вспомогательной режущей кромкой и обработанной поверхностью.

Рис. 2.1. Геометрические парамеры токарного резца:

а – координатные плоскости; б – углы резца в статике;

1 – плоскость резания Рп ; 2 – рабочая плоскость Рs ; 3 – главная несущая плоскость Рt ; 4 – основная плоскость Pv

Геометрические параметры режущего инструмента оказывают существенное влияние на усилие резания, качество поверхности и износ инструмента. Так, с увеличением угла у инструмент легче врезается в материал, снижаются силы резания, улучшается качество поверхности, но повышается износ инструмента. Наличие угла а снижает трение инструмента о поверхность резания, уменьшая его износ, но чрезмерное его увеличение ослабляет режущую кромку, способствуя ее разрушению при ударных нагрузках.

Силы резания Р представляют собой силы, действующие на режущий инструмент в процессе упругопластической деформации и разрушения срезаемой стружки.

Силы резания приводят к вершине лезвия или к точке режущей кромки и раскладывают по координатным осям прямоугольной системы координат xyz(рис. 2.2). В этой системе координат ось z направлена по скорости главного движения и ее положительное направление соответствует направлению действия обрабатываемого материала на инструмент. Ось у направлена по радиусу окружности главного движения вершины. Ее положительное направление также соответствует направлению действия металла на инструмент. Направление оси х выбирается из условия образования правой системы координат. Значение усилия резания определяется несколькими факторами. Оно растет с увеличением глубины h резания и скорости подачи s (сечения срезаемой стружки), скорости резания ν, снижением переднего угла γ режущего инструмента. Поэтому расчет усилия резания производится по эмпирическим формулам, установленным для каждого способа обработки (см. справочники по обработке резанием). Например, для строгания эта формула имеет вид Р = Сp h X p s Y p X n где коэффициенты Ср , Хр , Yp , nхарактеризуют материал заготовки, резца и вид обработки.

Мощность процесса резания определяется скалярным произведением:

Выразив это произведение через проекции по координатным осям, получим:

где vx , vy , vz — проекции на оси координат скорости движения точки приложения равнодействующей сил резания. В практических расчетах используется приближенная зависимость N = Pz v. Это упрощение обусловлено тем, что составляющие Ру и Рх полной силы резания малы по сравнению с Р2 , а скорость подачи относительно скорости резания составляет всего 1 — 0,1%.

Рис. 2.2. Схема действия сил резания на режущую кромку инструмента в точке, имеющую максимальную скорость перемещения νе , при обработке: а – точением; б – сверлением; в – фрезерованием; г – строганием; д– протягиванием; е – хонингованием; ж – суперфинишированием.

Производительность обработки при резании определяется числом деталей, изготовляемых в единицу времени: Q = \/Тт . Время изготовления одной детали равно Тт = Тд + Тт + Ткп , где То — машинное время обработки, затрачиваемое на процесс резания, определяется для каждого технологического способа; Тт — время подвода и отвода инструмента при обработке одной детали; Гвсп — вспомогательное время установки и настройки инструмента.

Таким образом, производительность обработки резанием в первую очередь определяется машинным временем То . При токарной обработке, мин: То = La/(nso h), где L — расчетная длина хода резца, мм; а — величина припуска на обработку, мм.

Отношение a/h характеризует требуемое число проходов инструмента при обработке с глубиной резания И. Поэтому наибольшая производительность будет при обработке с глубиной резания h = а, наибольшей подачей s и максимальной скоростью резания. Однако при увеличениипроизводительности снижается качесто поверхности и повышается износ инструмента. Поэтому при обработке резанием решается задача по установлению максимально допустимой производительности при сохранении требуемого качества поверхности и стойкости инструмента.

[1] – Материаловедение и технология металлов. Под ред. Г.П.Фетисова М.: Высшая школа, 2001

Источник

Привет студент

Основы учения о резании металлов

Получение из заготовки детали требуемой формы и размеров посредством снимания с заготовки слоев металла в виде стружки осуществляется различным режущим инструментом.

Основной формой всякого режущего инструмента является клин, простейшим режущим инструментом — резец.

В процессе обработки металла резанием различаются два основных движения — движение резания и движение подачи.

Движением резания, или главным движением, называют движение, при котором происходит отделение стружки; движение, при котором происходит перемещение режущего инструмента по отношению к обрабатываемому предмету, называют движением подачи. По отношению к обрабатываемому предмету подача может быть продольной, поперечной, вертикальной, круговой. Движение подачи может осуществляться перемещением режущего инструмента или обрабатываемого предмета.

Части резца. Резец состоит из рабочей части, называемой головкой, и части служащей для закрепления резца — тела резца (фиг. 397, а).

Элементы головки резца. В головке резца различают (фиг. 397, б): 1) переднюю грань — поверхность, по которой сходит стружка; 2) главную и вспомогательную задние грани— поверхности, обращенные к обрабатываемому предмету; 3) главную и вспомогательную режущие кромки, образуемые пересечением передней и задними (главной и вспомогательной) гранями резца; главная режущая кромка выполняет основную работу резания.

Место сопряжения главной и вспомогательной режущих кромок называется вершиной резца. Вершину резца делают острой или закругленной.

Длина перпендикуляра, опущенного из вершины резца на опорную поверхность его, называется высотой резца.

Правые и левые резцы. Резцы, у которых при наложении на них ладони правой руки так, чтобы пальцы были направлены к вершине, главная режущая кромка оказывается расположенной на стороне большого пальца, называют правыми; левыми называют резцы, у которых главная режущая кромка оказывается на стороне большого пальца при аналогичном положении левой руки.

Поверхности и координатные плоскости. На обрабатываемой детали при снятии с нее стружки резцом различают следующие поверхности (фиг. 398): обрабатываемую, обработанную поверхности и поверхность резания.

Обрабатываемой поверхностью называется поверхность, с которой снимают стружку.

Поверхностью резания называют поверхность, образуемую на обрабатываемой детали непосредственно режущей кромкой.

Обработанной поверхностью называют поверхность детали, полученную после снятия стружки.

Плоскость, касательную к поверхности резания и проходящую через режущую кромку, называют плоскостью резания.

Основной плоскостью называют плоскость, параллельную к продольной и поперечным подачам.

Плоскость, перпендикулярную к проекции главной режущей кромки на основную плоскость, называют главной секущей плоскостью (фиг. 399).

Плоскость, перпендикулярную к проекции вспомогательной режущей кромки на основную плоскость, называют вспомогательной секущей плоскостью.

Углы резца. В резцах различают углы, образуемые геометрической формой резца, и углы, образующиеся в процессе резания.

Углы, измеряемые в главной секущей плоскости, называются главными.

Главными углами являются главный задний угол, угол заострения, передний угол и угол резания (фиг. 399).

Главным задним углом а называется угол между главной задней гранью резца и плоскостью резания.

Главный задний угол а служит для уменьшения трения между обрабатываемой поверхностью и задней, гранью резца, величина его составляет 5—10°

(в зависимости от толщины стружки).

Углом заострения ß называется угол между передней и задней гранями резца

Передним углом у называется угол между передней гранью резца и плоскостью, перпендикулярной к плоскости резания, проведенной через главную режущую кромку.

Величина переднего угла у колеблется обычно в пределах 0—30°, достигая 40° при обработке-легких сплавов. Чем больше передний угол, тем легче резей проникает в обрабатываемый материал, меньше деформируется стружка, меньше

усилие резания. При скоростном резании иногда пользуются резцами с отрицательными передними углами.

Углом резания б называется угол между передней гранью резца и плоскостью резания.

Из фиг. 399 видно:

В табл. 49 приведены предельные величины углов а и у в зависимости от обрабатываемого материала.

Зная величину переднего угла, можно определить угол резания б =90°—у.

Кроме главных углов, резец имеет еще вспомогательные углы и углы в плане.

Вспомогательным задним углом а1 называется угол между вспомогательной задней гранью и плоскостью, проходящей через вспомогательную режущую кромку перпендикулярно к основной плоскости. Вспомогательный задний угол измеряется во вспомогательной секущей плоскости, перпендикулярной к проекции вспомогательной режущей кромки на основную плоскость.

Главным углом в плане ф называется угол между проекцией главной режущей кромки на основную плоскость и направлением подачи.

Вспомогательным углом в плане ф1 называется угол между проекцией вспомогательной режущей кромки на основную плоскость и направление подачи.

Углом при вершине в плане г называется угол между проекциями режущих кромок на основную плоскость.

Углом наклона главной режущей грани л называется угол, заключенный между режущей кромкой и линией, проведенной через вершину резца параллельно основной плоскости.

Угол наклона главной режущей кромки считается положительным, когда вершина резца является наинизшей точкой режущей кромки, отрицательным—когда вершина резца является наивысшей точкой режущей кромки, и равным нулю при главной режущей кромке, параллельной к основной плоскости (фиг. 400).

Элементы резания. Перемещение режущей кромки резца относительно обрабатываемой поверхности в единицу времени называется скоростью резания. Скорость резания измеряется в м/мин и обозначается буквой u.

Глубиной резания называется расстояние между обрабатываемой и обработанной поверхностями, перпендикулярное к последней; глубина резания измеряется в мм и обозначается буквой t (фиг. 401, а).

Если при обточке заготовки диаметром d мм за один проход диаметр ее делается равным d1 мм, то глубина резания будет равна

Если при обработке плоскости детали толщиной Н мм после одного прохода резца толщина детали сделается равной h мм (фиг. 401, б), глубина резания будет

Подачей называется величина перемещения резца относительно обрабатываемой детали или обрабатываемой детали относительно резца за определенное время (для токарных и сверлильных станков за один оборот шпинделя, а для строгальных и долбежных станков — за один рабочий ход ползуна).

У токарного станка различают продольную подачу — вдоль линии центров станка, поперечную—перпендикулярно к линии центров и наклонную— под углом к линии центров. У строгального станка различают горизонтальную подачу, вертикальную и наклонную. У долбежного станка различают продольную подачу, поперечную и круговую.

У сверлильного станка подача может быть только по оси инструмента. Подача обозначается буквой s и для токарных работ измеряется в мм на один оборот детали, а для строгальных и долбежных работ — в мм за один рабочий ход резца, для сверлильных — в мм за один оборот инструмента.

Шириной стружки называется расстояние между обрабатываемой и обработанной поверхностями, измеренное по поверхности резания. С достаточной для практики точностью ширину стружки можно считать равной рабочей длине режущей кромки резца, т. е. той части кромки, которая участвует в процессе резания. Ширину стружки измеряют в мм и обозначают буквой b; величину b можно подсчитать по формуле

где t — глубина резания в мм;

ф — угол в плане в градусах.

Толщиной стружки называется расстояние, измеряемое в направлении, перпендикулярном к ширине стружки, между двумя последовательными положениями поверхности резания — у токарных станков за один оборот детали, а у строгальных и долбежных станков — за один проход резца. Толщина стружки измеряется в мм и обозначается буквой а; величина а может быть подсчитана по формуле

где s — подача в мм;

ф — угол в плане в градусах.

Площадью поперечного сечения стружки называют произведение глубины резания на подачу или ширины стружки на толщину; она обозначается буквой f и измеряется в мм:

Однако следует иметь в виду, что определение ширины, толщины и площади поперечного сечения стружки относится не к снятой с детали стружке, деформировавшейся в процессе резания, а к слою материала, снимаемого резцом, поэтому данные величины нельзя находить промерами снятой стружки.

Проф. В. Д. Кузнецов рекомендует поэтому термины ширина и толщина стружки заменить словами ширина и толщина среза, делая, таким образом разграничение между понятиями «площадь поперечного сечения стружки» и «площадь поперечного сечения среза».

На станках токарного типа скорость резания может быть подсчитана по формуле

где v — скорость резания в м/мин;

d — диаметр обрабатываемой детали в мм;

n — число оборотов обрабатываемой детали в минуту.

Машинным, или основным, временем называется время, затрачиваемое на самый процесс резания. При токарных работах основное время может быть подсчитано по формуле

где Тм — машинное или основное время в мин.;

L — длина обрабатываемой части детали в направлении подачи в мм;

i — количество проходов резца;

n — число оборотов детали в минуту;

s — подача в мм за один оборот.

Из приведенной формулы видно, что машинное время уменьшается, или, другими словами, производительность увеличивается с увеличением числа оборотов и подачи, а также с уменьшением количества проходов. Очевидно, что количество проходов уменьшается с уменьшением припусков на обработку, т. е. при более тщательном выполнении заготовок.

Производительность резания характеризуется количеством обработанных деталей в единицу времени (например, за час, за смену), которое находится в прямой зависимости от машинного времени.

Силы, действующие на резец. В процессе резания резец преодолевает сопротивление, которое оказывает обрабатываемый материал резанию с момента проникновения резца в металл.

Это сопротивление резанию можно представить в виде силы, приложенной к режущей кромке резца. При резании токарными резцами эту силу можно представить в виде трех составляющих (фиг. 402) Рх, Ру и Pz.

Рх действует в направлении подачи и называется усилием подачи; Ру действует вдоль оси резца и называется радиальным усилием; Pz действует в направлении главного рабочего движения и называется силой резания, или тангенциальной силой.

Наибольшую величину имеет тангенциальная сила; соотношение между составляющими силы, действующей на резец, приблизительно такое:

Если Рх и Ру выразить через получим

подставляя эти значения в формулу

т. е. равнодействующая сил, возникающих при резании, мало отличается от силы резания Pz; величины Рхи Ру, находящиеся в зависимости и от геометрических параметров инструмента, оказывают влияние как на обрабатываемые детали, так и на механизм станка.

У строгального станка давление резания разлагают на три составляющие: на горизонтальную, параллельную главному движению резца, горизонтальную, параллельную подаче, и вертикальную, перпендикулярную к подаче.

Сила резания измеряется в кг.

Удельным давлением резания называется отношение величины главной составляющей усилия резания Pz к площади среза стружки; его обозначают через р; тогда

где Pz — тангенциальная составляющая силы, действующей на резец, в кг;

f — поперечное сечение стружки в мм 2 .

Теоретические исследования сил, действующих в процессе резания металлов, проводились многими русскими и советскими учеными. Первые исследования проводились проф. И. А. Тиме. Они были затем продолжены проф. Зворыкиным, Бриксом и др. В последнее время теоретические исследования сил резания производили проф. С.С. Рудник, проф. В. Д. Кузнецов, проф. В. А. Кривоухов и др.

Проф. В. Д. Кузнецов на основании своих исследований дал следующую формулу для определения силы резания:

где q — условный предел текучести при сжатии—величина, близкая к фактическому пределу текучести, но несколько меньше его;

а — толщина среза;

b — ширина среза;

Lмв — коэфициент, характеризующий усадку стружки.

Формула, близкая к приведенной выше, была получена проф. В. А. Кривоуховым.

Экспериментальные исследования сил резания показали, что результаты расчета этих сил по формуле, приведенной выше, обычно преуменьшены. Вследствие этого для расчета сил резания пользуются эмпирическими формулами, выведенными на основании большого экспериментального материала.

Определение величины силы резания. Бюро технических нормативов для определения Рz рекомендует пользоваться следующей формулой:

где Pz — сила резания в кг;

ср — коэфициент, зависящий от механических свойств обрабатываемого материала;

t — глубина резания в мм;

хр и ур —показатели степеней величины, зависящие от свойств обрабатываемого материала.

Числовые значения ср, хр и ур для различных материалов даны в специальных таблицах, изданных Бюро технических нормативов Министерства станкостроения. Показатели степени хр и у, остаются почти неизменными при всех случаях обработки: хр=1, а ур = 0,75÷0,8. В то же время величина ср

резко изменяется в зависимости от прочности и твердости обрабатываемого металла. Так, для конструкционной стали с qв = 40 кг/мм 2 ср = 151,0, a с qв = 75 ср= 248; для серого чугуна твердостью Нв = 120 ср =96,0, а для такого же чугуна твердостью Нв = 200 сР = 117,0.

На величину силы резания оказывает существенное влияние ряд факторов: передний угол у, угол в плане ф, радиус закругления при вершине резца r, скорости резания u и, наконец, охлаждение в процессе резания.

Установлено, что с увеличением переднего угла у сила резания уменьшается; при изменении главного угла в плане ф в сторону уменьшения или увеличения от 60° сила резания возрастает при увеличении радиуса закругления при вершине резца сила резания также увеличивается. Исследования показали, что увеличение скорости резания до 100 м/мин дает значительное уменьшение силы резания. Применение охлаждения может снизить силу резания до 25% в зависимости от охлаждающей жидкости.

Крутящий момент резания. По величине силы резания Pz может быть подсчитан крутящий момент на шпинделе токарного станка:

где d — диаметр обрабатываемой детали в мм;

Pz — сила резания в кг;

Мкр — крутящий момент в кгмм.

Изгибающий момент резания. Под действием сил Pz и Ру обрабатываемая деталь подвергается изгибу; равнодействующая Pz и Ру будет равна P 2 z + P 2 y

Обозначая длину обрабатываемой детали через l в мм, изгибающий момент можно выразить формулой

Мощность резания. Мощность, расходуемая при резании, может быть подсчитана по формуле

где Nрез — мощность в л. с.;

Рz — сила резания в кг;

u — скорость резания в м/мин.

Усилие, необходимое для подачи резца, должно преодолевать действие слагающей Рх; расход мощности, необходимой для подачи резца, может быть подсчитан по формуле

где Nпод— мощность, расходуемая на подачу, в л. с.; Рх— сила подачи в кг; s — подача в мм/об;

n — число оборотов шпинделя в минуту.

Скачать реферат: У вас нет доступа к скачиванию файлов с нашего сервера. КАК ТУТ СКАЧИВАТЬ

Источник

Читайте также:  Формула концентрированной серной кислоты с металлами
Поделиться с друзьями
Металл
Adblock
detector
Название: Обработка резанием
Раздел: Промышленность, производство
Тип: реферат Добавлен 11:20:25 07 февраля 2005 Похожие работы
Просмотров: 6713 Комментариев: 20 Оценило: 15 человек Средний балл: 4.1 Оценка: 4 Скачать