Основной конструкционный металл с магнитными свойствами

Магнитные стали и сплавы. Твердые и мягкие стали

Среди металлов есть такие, которые обладают свойствами намагничивания. К ним относятся железо, никель и кобальт. Гадолиний приобретает ферромагнитные свойства при температуре ниже 0 о С. При добавлении в сплав этих элементов получается магнитная сталь. Кроме того, они характеризуются наличием остаточной индукции и коэрцитивной силы.

Магнитные стали и сплавы

Все сплавы, обладающие магнетизмом, можно разделить на 2 вида:

Твердые стали соответствуют ГОСТ 6862-71 и из них производят постоянные магниты. Для этого используют высокоуглеродистые вещества, легированные хромом или хромом и кобальтом.

Сплавы на основе железа также можно использовать для производства магнитов постоянного поля. Примером может стать материал альнико, где 54% составляет железо.

Магнитомягкие — так по-другому называют электротехнические стали. Они должны соответствовать ГОСТ 21427-75. Такие магнитные стали применяют для работы в переменных полях, там, где происходит намагничивание без перерыва. Магнитотвердые материалы владеют существенной остаточной индукцией, высокой коэрцитивной силой. Малая магнитная проницаемость становится дополнительным свойством сплава.

Из материала изготавливают сердечники катушек электромагнитов и трансформаторов. Для этого подходят кремнистые и низкоуглеродные сплавы.

Магнитную сталь маркируют четырехзначным числом. Первое число определяет структуру и вид прокатки. Второе — содержание кремния. Третье число определяет тепловые потери, четвертое — код нормируемого параметра.

Для работы в переменных полях можно использовать магнитную сталь на основе железа или никеля. Примером такого материала является альсифер.

Ферриты

Для сокращения электрических потерь используют повышение удельного сопротивления. Магнитная сталь играет важную роль в современном производстве. Большим сопротивлением обладают магнитные материалы — ферриты.

Ферриты получают из оксидов методом порошковой металлургии. Такие материалы обладают свойствами ферромагнетика и диэлектрика, что позволяет их использовать там, где применяются высокие и сверхвысокие частоты.

Себестоимость ферритных сердечников ниже, чем остальных, благодаря автоматизации производства. Сплавы можно подразделить на 4 группы:

Сплавы

Магнитная сталь для постоянного магнита должна обладать достаточным объемом углерода, который находится в твердом растворе. Такие сплавы называются деформируемыми. Самыми простыми и дешевыми считаются высокоуглеродистые материалы. Добавка кобальта увеличивает магнитные свойства стали.

К литым относятся сплавы на основе Fe—Ni—A1. Более 80% магнитов изготовляется из такого материала. Самые качественные сплавы этой группы обладают очень мощным магнетизмом. Они отличаются от углеродистой и хромистой магнитной стали.

Маленькие магниты производят методом спекания. Для этого потребуется никель, алюминий и железо высокой чистоты. Они славятся повышенной твердостью. Таким методом создают магниты из магнитотвердых ферритов. Наибольшую популярность получили бариевые ферриты из-за высоких магнитных свойств и приемлемой цены.

Источник

Стали и сплавы с магнитными и электрическими свойствами

Стали и сплавы с магнитными свойствами. Магнитные стали и сплавы делятся на две группы: магнитотвердые и магнитомягкие.

Магнитотвердые стали и сплавы обладают высоким значением коэрцитивной силы Нс и остаточной индукции Вr. Они применяются для изготовления постоянных магнитов. Постоянные магниты небольших размеров делают из углеродистых заэвтектоидных сталей УЮ-У12.

Коэрцитивная сила углеродистых сталей резко возрастает после закалки на мартенсит вследствие появления больших напряжений.

У стали У12 после закалки в воде Нс = 4800 А/м, Вr = 0,8 Тл. Однако низкая прокаливаемость, малая стабильность остаточной ин­дукции привели к вытеснению углеродистых сталей легированными.

Легирование металла вызывает повышение магнитной твердо­сти (т.е. коэрцитивной силы). Коэрцитивная сила возрастает при образовании в твердом растворе второй фазы, с повышением дис­кретности второй фазы, при возникновении напряжений в крис­таллической решетке, при из­мельчении зерна.

В настоящее время для из­готовления постоянных маг­нитов широко используют стали, легированные хромом, вольфрамом, кобальтом или совместно несколькими эле­ментами (ЕХЗ, ЕХ7В6, ЕХ5К5). Буквой Е обозначает­ся магнитная сталь.

Для получения высоких магнитных свойств стали подвергают сложной термической обработке, состоящей из нормализации, за­калки в масле или в воде и низкотемпературного отпуска (при 100°С в течение 10-24 ч).

Высокое содержание углерода и легирующих элементов в этих сталях придает им повышенную твердость, поэтому перед холодной механической обработкой их подвергают смягчающему отжигу при 700—850 °С. При отжиге происходит образование карбидов, что ухуд­шает магнитные свойства («магнитная порча»). Поэтому перед за­калкой для устранения «магнитной порчи» проводят нормализацию, при которой происходит растворение крупных карбидных фаз.

Во избежание «магнитной порчи» при закалке нагрев должен быть кратковременным (не более 15 мин). Охлаждение можно про­водить в воде или в масле, но обычно охлаждают в масле, чтобы избежать коробления и образования трещин, хотя при этом не­сколько снижаются магнитные свойства.

Обработка холодом повышает магнитные свойства, так как ус­траняет немагнитный (парамагнитный) аустенит.

Отпуск несколько снижает коэрцитивную силу, но обеспечива­ет стабильность магнитных свойств в процессе эксплуатации.

Высокие магнитные свойства имеют железоникелькобальтовые сплавы, в частности магнит (8% А1, 24% Со, 14% Ni, 3% Си, остальное железо).

Читайте также:  Диск для распиловочного станка по металлу

Магниты из этого сплава получают литьем, так как сплав не под­дается деформации и обработке резанием. Сплав подвергают закалке в магнитном поле. Сущность закалки в следующем. Нагретый до 1300°С сплав помещают между полюсами электромагнита напряженностью 160 А/м и охлаждают до температуры ниже 500°С, дальнейшее ох­лаждение проводят на воздухе. После такой обработки сплав облада­ет анизотропией магнитных свойств.

Магнитные свойства достигают высокого уровня в том направ­лении, в котором действовало внешнее магнитное поле при закал­ке. Затем сплав подвергают отпуску при 600 °С. Магнитные свой­ства: Я = 40 000 А/м, Вг = 1,2 Тл.

Последнее время находят применение сплавы на основе кобаль­та (52% Со, 14% V, остальное железо). Сплав поставляется в виде лент, полос и т.д.

Магнитомягкие сплавы и стали имеют низкую коэрцитивную силу и высокую магнитную проницаемость. Их применя­ют для изготовления сердечников, магнитных устройств, работаю­щих в переменных магнитных полях. Магнитомягкие материалы дол­жны иметь однородную (гомогенную) структуру, крупное зерно.

Незначительный наклеп сильно снижает магнитную проницае­мость и повышает коэрцитивную силу. Поэтому магнитомягкие сплавы для снятия напряжений и искажений структуры подверга­ют рекристаллизационному отжигу.

Широкое применение получило чистое железо, в котором со­держание углерода и всех примесей строго ограничено. Железо при­меняют для изготовления сердечников реле, электромагнитов постоянного тока, полюсов электрических машин и др.

Широкое применение в промышленности нашла электротех­ническая сталь — сплав железа с кремнием (0,05—0,005% С, 1,0— 1,8% Si). Легирование кремнием повышает электросопротивление стали и тем самым уменьшает потери на вихревые токи, повыша­ет магнитную проницаемость, снижает коэрцитивную силу и по­тери на гистерезис, способствует росту зерна, улучшает магнит­ные свойства за счет графитизирующего действия.

Маркируют электротехнические стали следующим образом: пер­вая цифра означает вид проката и структурное состояние (1 — го­рячекатаная, 2 — холоднокатаная изотропная, 3 — холоднокатаная анизотропная); вторая — содержание кремния: 0 — до 0,4%; 1 — 0,4- 0,8%; 2 — 0,8-1,8%; 3 — 1,8-2,8%; 4 — 2,8-3,8%; 5 — 3,8-4,8%; третья — основную нормируемую характеристику (0, 1 и 2 — удельные потери при различных значениях магнитной индукции и частоты, 6 и 7 — магнитная индукция соответственно в слабых и средних полях). Вместе первые три цифры обозначают тип стали; четвертая — порядковый номер типа стали. Чем он выше, тем меньше удельные потери, тем больше магнитная индукция.

Электротехническую сталь для снятия наклепа после прокатки и для укрупнения зерна подвергают отжигу при 1100-1200 °С в атмосфере водорода.

При рубке листов, резке, штамповке, гибке магнитные свойства ухудшаются. Для восстановления магнитных свойств электротехни­ческой стали рекомендуется отжиг при 750—800 °С в течение 2 ч с медленным (- 50 град/ч) охлаждением до 400 °С. При этом необхо­димо исключить окисление и науглероживание стали.

Электротехническую сталь изготавливают в виде листов толщи­ной от 1 до 0,05 мм.

Железоникелевые сплавы (от 40 до 80% Ni) — пермаллои — имеют высокую магнитную проницаемость, что очень важно для прибо­ров, работающих в слабых полях (радио, телефон, телеграф). Маг­нитные свойства пермаллоя сильно зависят от термической обра­ботки.

Для улучшения магнитных свойств после механической обра­ботки пермаллои подвергают отжигу при 1100—1200 «С в вакууме или атмосфере водорода. При этом укрупняется зерно, устраняют­ся остаточные напряжения и удаляются примеси углерода.

Охлаждение в магнитном поле также ведет к повышению маг­нитных свойств.

Немагнитные стали. В электромашиностроении и приборост­роении многие детали изготавливают из немагнитных сталей. Рань­ше для этой цели применяли цветные металлы, а теперь широко используют немагнитные аустенитные стали. Применение этих сталей резко снижает стоимость деталей, а также повышает ме­ханические свойства и уменьшает потери на вихревые токи в элек­троаппаратуре.

Применение марганцовистой аустенитной износоустойчивой стали (11ОГ13Л) в качестве немагнитной ограничивается ее пло­хой обрабатываемостью резанием, что обусловлено высокой склон­ностью ее к наклепу, а также нестабильностью прочностных свойств.

Широкое применение находят аустенитные коррозионно-стой­кие стали 12Х18Н9, 12Х18Н9Т. Желательно, чтобы содержание ни­келя в них соответствовало верхнему пределу, так как в противном случае при больших степенях холодной деформации возможно ча­стичное протекание γ→α — превращения, ведущего к появлению фер­рита, обладающего ферромагнитными свойствами.

Кроме того, применяются более дешевые стали 55Г9Н9ХЗ и 45Г17ЮЗ, в которых никель частично или полностью заменен мар­ганцем.

Стали и сплавы с электрическими свойствами. Элементы электросопротивления должны иметь низкую электропроводность или вы­сокое электросопротивление. Так как образование твердых раство­ров при легировании сопровождается повышением электросопро­тивления, то все сплавы высокого сопротивления, как правило, представляют собой твердые растворы.

Различают сплавы реостатные (для изготовления реостатов) и окалиностойкие сплавы высокого электросопротивления (для нагре­вательных элементов печей и электроприборов).

Сплавы высокого электросопротивления должны удовлетворять следующим требованиям:

иметь большое удельное электросопротивление;

иметь малый температурный коэффициент электросопротивле­ния (т.е. электросопротивление должно мало изменяться при изме­нении температуры);

обладать высокой окалиностойкостью, т.е. способностью проти­востоять образованию окалины при высоких температурах.

Читайте также:  Химические свойства металлов взаимодействие азотной кислотой

В качестве реостатных сплавов широкое применение нашли спла­вы меди с никелем — константан и никелин. Константан содер­жит 40% Ni, 1—2% Мn, остальное медь; никелин — 45% Ni, ос­тальное медь.

В качестве сплавов высокого электросопротивления применяют сплавы Ni — Сг (нихромы), Fe — Ni — Cr (ферронихромы) и Fe — Cr — А1 (фехраль) и др.

На свойства сплавов высокого электросопротивления вредное влияние оказывают такие примеси, как углерод, сера, фосфор и т.д. Примеси способствуют окислению границ зерен и тем самым уменьшают окаливаемость и повышают хрупкость.

В приборостроении часто требуются сплавы с определенным ко­эффициентом линейного расширения, например таким же, как у стекла, равным нулю. Для удовлетворения этих требований в каж­дом конкретном случае изготавливают сплавы строго определен­ного состава.

Износостойкие стали. Износ деталей в процессе эксплуатации может быть вызван двумя причинами: трением деталей друг о друга и царапанием твердых частиц о поверхность деталей (абразивный износ).

При обычном трении поверхность металла наклёпывается и со­противление износу возрастает. Следовательно, износостойкость определяется способностью металла к наклепу.

В случае абразивного износа, когда твердые частицы, абразивы, вырывают мельчайшие кусочки металла, стойкость против износа определяется сопротивлением металла отрыву и твердостью.

Для изготовления деталей, работающих на износ в условиях тре­ния и высоких давлений и ударов, применяют высокомарганцовис­тую аустенитную сталь 110Г13Л, содержащую 1,0-1,3% С и 11,5-14,5% Мn. Сталь применяют в литом и реже в горячедеформированном состоянии. Структура литой стали состоит из аустенита и избыточных карбидов (Fe, Mn)3C, выделяющихся по границам зе­рен и снижающих прочность и вязкость стали. Для повышения проч­ности и вязкости сталь подвергают закалке с температуры 1050— 1100°С в воде. При такой температуре карбиды растворяются, а быс­трое охлаждение в воде полностью задерживает их выделение. После закалки сталь имеет аустенитную структуру и обладает следующими механическими свойствами: σв= 800-900 МПа, σ0,2 = 310. 350 МПа, δ=15 . 25%, ψ= 20 . 30%, 180 . 220 НВ.

Высокая износостойкость стали 110Г13Л при трении с давлени­ем и ударами объясняется повышенной способностью к наклепу.

Если при эксплуатации наблюдается только абразивный износ без значительного давления и ударов, вызывающих наклеп, то сталь не обнаруживает повышенной износостойкости.

Источник

Основной конструкционный металл с магнитными свойствами

От материалов для постоянных магнитов требуется высокое значение коэрцитивной силы и остаточной индукции, а также их постоянство во времени. Остальные магнитные характеристики для этой группы сплавов практического значения не имеют. Рассмотрим высококоэрцитивные сплавы, используемые для постоянных магнитов.

Углеродистая сталь применяется для изготовления небольших по размеру магнитов. Обычно для этой цели используется сталь которая после закалки имеет

Хромистая сталь или (табл. 93) имеет приблизительно такие же магнитные свойства, что и углеродистая.

Эти стали обладают большой прокаливаемостью, и поэтому из них можно изготавливать магниты больших размеров.

Кобальтовые стали (содержащие наряду с хромом 5 или обладают наиболее высокими магнитными свойствами по сравнению с другими сталями.

Однако дефицитность кобальта и то обстоятельство, что более высокие магнитные свойства достигаются в сплавах

Таблица 93. (см. скан) Состав стали для постоянных магнитов, % (ГОСТ 6862-71)

(менее дефицитных), крайне ограничили применение кобальтовых сталей.

Сплавы остальное — железо так называемого сплава «Альнико» или в них можно получить коэрцитивную силу 400—500 Э при остаточной индукции . Столь высокое значение магнитных свойств позволяет изготавливать мощные магниты весьма малых габаритов и массы, что имеет большое значение для приборостроения (рис. 383).

Рис. 383. Размеры магнитов из различных магнитных материалов одинаковой магнитной мощности

Рассмотрим подробнее конкретные марки магнитных сталей и сплавов, применяемых промышленностью для изготовления магнитов, и режимы термической обработки, обеспечивающие структурное состояние, обладающее наилучшими магнитными характеристиками.

Для получения высоких магнитных свойств стали подвергают сложной термической обработке, состоящей из предварительной нормализации (воздушной закалки), закалки с обычной температуры в воде или масле и низкого отпуска (желательно с предварительной обработкой холодом).

Режимы термической обработки и гарантируемые магнитные свойства приведены в табл. 94.

Первая, высокая воздушная закалка (или нормализация), необходима для растворения крупных включений карбидных фаз, которые могли образоваться при предшествующем отжиге и которые при нормальном нагреве под закалку (указывается в третьем столбце табл. 94) могут не растворяться в аустените, что не обеспечит получения высоких магнитных свойств.

Обработка холодом устраняет парамагнитный остаточный аустенит и тем самым повышает магнитные свойства; отпуск при хотя немного и снижает коэрцитивную силу, но стабилизирует ее величину во времени.

Стальные магниты изготавливают таким же образом, как и другие стальные детали, т. е. ковкой с последующим отжигом и механической обработкой.

Как уже отмечалось, более высокие магнитные свойства можно получить в сплавах однако эти сплавы не поддаются механической обработке, и поэтому их следует изготавливать или отливкой или методами порошковой металлургии.

Читайте также:  Сварка или пайка цветных металлов

Таблица 94. (см. скан) Термическая обработка и магнитные свойства магнитных сталей (ГОСТ 6862-71)

Экспериментально было показано, что коэрцитивная сила для сплавов с разным содержанием имеет максимум примерно при причем чем выше содержание никеля в сплаве, тем выше абсолютное значение коэрцитивной силы: у сплавов с оно достигает 650 Э.

Остаточная индукция с увеличением содержания никеля уменьшается, хотя максимальная магнитная энергия (произведение наибольшая при Поэтому практически применяют сплавы и с различным (в зависимости от требуемых значений магнитных свойств) содержанием никеля. Составы промышленных сплавов приведены в табл. 95.

Таблица 95. (см. скан) Состав и свойства литых магнитных сплавов

Исключительно высокую коэрцитивную силу сплавов и их необычное поведение при термической обработке изучали неоднократно. В ряде случаев сплавы достигают максимальной коэрцитивной силы уже в литом состоянии или после нагрева между и точкой плавления и последующего охлаждения с регламентированной скоростью (например, 10-20 °С в секунду) (рис. 384, а). В то же время в результате резкой закалки получается пониженная коэрцитивная сила, которую не удается повысить отпуском до значений, получаемых при закалке со средней скоростью охлаждения (рис. 384, б). Скорость охлаждения, обеспечивающая получение максимальной коэрцитивной силы, называется критической скоростью охлаждения.

Согласно современным представлениям, получение высокой коэрцитивной силы при закалке следует связывать с процессом распада однофазного твердого раствора, существующего у сплавов при высоких температурах (после нагрева под закалку).

Рис. 384. Коэрцитивная сила сплава в зависимости от: а — скорости охлаждения при закалке с 1250 °С; б — температуры отпуска

Исходный однофазный сплав (-фаза) с решеткой объемноцентрироваиного куба в процессе охлаждения с высокой температуры полностью распадается с образованием высокодисперсных ферромагнитных фаз также имеющих объемно-центрированные, кристаллические решетки. По химическому составу фазы существенно различны: Рх-фаза близка к железу, -фаза представляет собой твердый раствор на основе химического соединения Обе фазы имеют упорядоченную кристаллическую структуру.

Так как решетки обеих фаз однотипны, а параметры их близки друг к другу, то между ними сохраняется прочная когерентная связь и свойственное такому роду связи напряженное состояние по поверхностям раздела фаз.

Подобного типа гетерогенная структура, состоящая из и -фаз с ненарушенной когерентной связью, обладает наиболее высокой коэрцитивной силой.

Магнитные свойства сплавов в сильной степени зависят от массы магнита и его химического состава. Чем массивнее магнит, тем при данном химическом составе медленнее приходится его охлаждать, чтобы не образовывались трещины. Но при этом скорость охлаждения может оказаться меньше «критической» и магнитные свойства не достигнут своего максимального значения.

Наивысшие магнитные свойства достигаются при (остальное железо). Никель увеличивает критическую скорость охлаждения, а алюминий ее уменьшает.

Применяют также сплавы с добавками кремния Такие сплавы обладают очень высокой коэрцитивной силой (до 640 Э) при умеренной индукций и пониженной критической скоростью охлаждения, что очень существенно при изготовлении массивных магнитов. Добавка меди к сплавам позволяет частично заменить дорогой никель и улучшить свойства сплава. Введение в сплав с до повышает без снижения

Наиболее высокие магнитные свойства достигаются при одновременном введении меди и кобальта. Последний повышает коэрцитивную силу и остаточную индукцию. Особое внимание следует уделить высококобальтовым сплавам Со), которые подвергаются так называемой закалке в магнитном поле. Сущность этой закалки заключается в том, что нагретый до температуры закалки (около 1300 °С) магнит быстро помещают между полюсами электромагнита (напряженность поля должна быть не менее и так охлаждают до температуры ниже

Дальнейшее охлаждение проводят обычно на воздухе. После такой обработки магнит обладает резкой анизотропией магнитных свойств. Магнитные свойства очень высоки только в том направлении, в котором действовало внешнее магнитное поле в процессе закалки.

Рассмотрим явления, происходящие при термической обработке в магнитном поле. Как известно, процесс перехода сплава из парамагнитного состояния в ферромагнитное (в точке Кюри) заключается в возникновении в нем областей спонтанного намагничивания. Если в это время на сплав подействовать сильным магнитным полем, то в микрообъемах сплава произойдет пластическое деформирование, вызванное поворотом этих областей, стремящихся ориентироваться вдоль силовых линий внешнего магнитного поля.

Поворот областей спонтанного намагничивания (т. е. пластическая деформация) может произойти тем легче, чем выше в это время температура сплава, т. е. чем выше его точка Кюри. Присадка кобальта сильно повышает эту температуру. Поэтому термомагнитная обработка сплавов с большими добавками кобальта дает значительный эффект.

В последнее время начинают применять различные магнитные деформируемые текстурованные сплавы. Эти сплавы сравнительно легко обрабатываются резанием, и их выпускают главным образом в виде полос, лент и т. д. В качестве такого сплава можно указать, например, на викаллой. Один из типов викаллоя ( — остальное) дает остаточную индукцию около при коэрцитивной силе около

Получили также применение высококоэрцитивные сплавы на основе соединений редкоземельных металлов.

Источник

Поделиться с друзьями
Металл