Может ли металл стать газообразным

Содержание
  1. Может ли металл стать газообразным
  2. МЕТАЛЛЫ-ЖИДКОСТИ, МЕТАЛЛ-ГАЗ (!)
  3. Может ли металл быть газом?
  4. Может ли металл быть газом?
  5. Остается ли металл металлом, когда он превращается в газ?
  6. Почему металлы вообще твердые?
  7. Могут ли железо, ртуть и свинец стать газами
  8. Мы видим мир снаружи
  9. Химики видят вещества изнутри
  10. Может ли металл стать газообразным
  11. МЕТАЛЛЫ-ЖИДКОСТИ, МЕТАЛЛ-ГАЗ (!)
  12. Может ли сталь находится в газообразном состоянии
  13. Может ли металл быть газом?
  14. Может ли металл быть газом?
  15. Остается ли металл металлом, когда он превращается в газ?
  16. Почему металлы вообще твердые?
  17. Может ли сталь находится в газообразном состоянии
  18. МЕТАЛЛЫ-ЖИДКОСТИ, МЕТАЛЛ-ГАЗ (!)
  19. Тема: Три состояния вещества
  20. Основные агрегатные состояния вещества
  21. Агрегатные состояния вещества
  22. Твердое состояние
  23. Жидкое состояние
  24. Газообразное состояние
  25. Фазовые переходы: изменение агрегатных состояний вещества
  26. График фазовых переходов
  27. Решение задач по фазовым переходам
  28. Сублимация и десублимация
  29. Влажность воздуха: испарение и конденсация
  30. Как влажность влияет на человека

Может ли металл стать газообразным

МЕТАЛЛЫ-ЖИДКОСТИ, МЕТАЛЛ-ГАЗ (!)

Все металлы — вещества твердые, твердые в той или иной степени. Это общее правило. Однако есть исключения.

Некоторые металлы скорее представляют собой жидкости. Крупинки галлия или цезий легко бы расплавились на ладони, потому что температура их плавления немногим менее 30 градусов. Франций, который пока в виде чистого металла не приготовлен, плавился бы уже при комнатной температуре. А вот всем известная ртуть — классический пример жидкого металла. Она замерзает при минус 39 градусах, почему и применяется для изготовления самых разнообразных термометров.

В этом отношении сильным конкурентом ртути оказывается галлий. И вот благодаря каким обстоятельствам. Ртуть закипает сравнительно быстро, примерно при 300 градусах. Значит, измерять высокие температуры с помощью ртутных термометров нельзя. А чтобы галлий превратился в пар, нужна температура 2000 градусов. Ни один металл не может так долго оставаться в жидком состоянии, иметь такую разницу между температурами плавления и кипения. Кроме галлия. Потому-то он настоящая находка для изготовления высокотемпературных термометров.


Металлы-жидкости, металл-газ

Еще один штрих, на сей раз совершенно удивительный. Ученые теоретически доказали: если бы существовал тяжелый аналог ртути (элемент с очень большим порядковым номером, неизвестный на Земле обитатель воображаемого восьмого этажа Большого дома), то его естественное состояние при обычных условиях было бы газообразное. Газ, обладающий химическими свойствами металла! Удастся ли когда-нибудь ученым познакомиться с таким уникумом?

Свинцовую проволоку можно расплавить в пламени спички. Оловянная фольга, брошенная в огонь, моментально превращается в каплю жидкого олова. А вот чтобы превратить в жидкость вольфрам, тантал или рений, приходится поднимать температуру выше 3000 градусов. Эти металлы расплавить труднее, чем все прочие. Вот почему нити накаливания в электрических лампах делают из вольфрама и рения.

Температуры кипения некоторых металлов достигают поистине грандиозных величин. Скажем, гафний закипает при 5400 градусах (!) — это почти температура поверхности Солнца.

Источник

Может ли металл быть газом?

Да, металлы могут быть газами, в зависимости от того, насколько высока их температура кипения. Но действительно ли газообразные металлы считаются металлами?

Закройте на мгновение глаза и позвольте слову «металл» всплыть в вашей голове. А теперь ответьте: какой первый образ приходит вам на ум, когда вы думаете о «металле»?

Большинство из вас увидят твердый, блестящий твердый предмет — может быть, блестящий меч, гладкую машину или чистую посуду?

Слово «металл» ассоциируется у нас с твердыми объектами, потому что большинство металлов вокруг нас — это твердые тела. Но ограничиваются ли металлы только твердым телом? Могут ли они быть газом?

Может ли металл быть газом?

Да, конечно! Хотя металлы обычно находятся в твердом состоянии при комнатной температуре (вероятно, поэтому мы ассоциируем слово «металл» с твердыми объектами), металлы также могут быть газами.

Дело в том, что состояния вещества универсальны: металл может быть твердым, жидким или газообразным. Но это состояние определяется на основе правильных условий температуры и давления.

Например, металл, скажем, свинец, имеет температуру кипения 1740 градусов по Цельсию. Теперь вы знаете, что свинец в своем «естественном состоянии» представляет собой твердое вещество. Но когда вы начнете его нагревать, он сначала превратится в жидкость при 327 градусах Цельсия, а если вы продолжите подавать больше тепла, он превратится в газ при 1740 градусах Цельсия.

Свинец превращается в пар при 1740 градусах Цельсия.

Другой отличный пример — ртуть. Фактически, это металл с самой низкой температурой кипения (356,7 °C), что означает, что из всех металлов он превращается в газ при относительно более низкой температуре.

Но учтите, что пары ртути очень вредны. По данным Всемирной организации здравоохранения, «вдыхание паров ртути может оказывать вредное воздействие на нервную, пищеварительную и иммунную системы, легкие и почки и может быть фатальным. Неорганические соли ртути разъедают кожу, глаза и желудочно-кишечный тракт, а при попадании внутрь могут вызывать токсическое воздействие на почки«.

Ртуть весьма примечательна — это металл, который существует в жидком виде при комнатной температуре, а затем закипает при небольшой температуре.

А теперь давайте обсудим еще один аспект этой саги о превращении металла в газ.

Остается ли металл металлом, когда он превращается в газ?

Мы установили, что металлы могут превращаться в газы, если их нагреть до точки кипения. Но если металл нагревается до точки кипения и становится газом, остается ли он металлом? Другими словами, может ли металл находиться в газообразном состоянии и при этом оставаться металлом?

Газообразные металлы не сохраняют свойств своих твердых аналогов, включая металлические связи, металлическую проводимость, пластичность, блеск или другие металлические свойства. Вот почему металлы больше не считаются металлами, когда они переходят в газообразное состояние — это просто газ с определенными характерными свойствами «родительского» элемента. (тогда чем же они считаются? — В ЭТОЙ ТОЧКЕ ОНИ ЯВЛЯЮТСЯ ПРОСТО ГАЗОМ. РТУТЬ ЯВЛЯЕТСЯ МЕТАЛЛОМ, НО КОГДА ОНА КИПИТСЯ, ЕЕ ПАР НАЗЫВАЕТСЯ РТУТНЫМ ГАЗОМ/ПАРАМИ)

Но почему металлы твердые? Что в них такого особенного, что делает их твердыми?

Почему металлы вообще твердые?

Металлы твердые при комнатной температуре из-за того, как их последовательные атомы упаковываются внутри.

Видите ли, вся материя состоит из атомов. Состояние вещества зависит от того, насколько близко или далеко друг от друга находятся эти атомы.

Если составляющие атомы вещества находятся далеко друг от друга, то это вещество будет существовать в виде газа при комнатной температуре. Атомы в жидком состоянии относительно ближе друг к другу, но в твердых телах атомы упакованы вместе в плотные кристаллы.

Из-за сильных сил, которые удерживают эти атомы близко друг к другу, твердые тела жесткие и имеют определенную форму и размер (в отличие от жидкости и газа).

Металлы твердые при комнатной температуре, потому что входящие в их состав атомы металлов упаковываются близко друг к другу, придавая им жесткий или «затвердевший» внешний вид. Это также является причиной того, что металлы имеют высокую температуру плавления и не существуют в жидком состоянии при комнатной температуре.

В целом, металлы могут превращаться в газ, но как только они превращаются в газ, они не сохраняют своих металлических свойств.

Источник

Могут ли железо, ртуть и свинец стать газами

Мы привыкли воспринимать вещества и материалы по нахождению их в той или иной группе таблицы Менделеева. Причем, обычный человек с уверенностью может отличить лишь несколько семейств химических элементов: металлы, неметаллы и газы. На самом деле таких семейств насчитывается 10, некоторые из них имеют типичные, характерные для той или иной группы свойства, другие же являются переходными. Их характеризуют свойства нескольких семейств, и химики выделили их в отдельную побочную подгруппу.

Обычный человек скорее даже не станет заглядывать в периодическую таблицу, чтобы определить, к какому семейству относится вещество. Он будет оценивать качества по внешнему виду, запаху или на ощупь.

Мы видим мир снаружи

Мы встречаемся с соединениями и элементами на каждом шагу. Во время утечки природного газа чувствуется запах добавки, человек понимает, что помещение наполняет газ CH4. Покупка шариков перед праздником, сопровождается их закачкой гелием (He). Человек осознает, что перед ним находятся газы.

Читайте также:  Кресло для руководителя easy chair 590 tc черное ткань металл

Железо и свинец могут принимать три агрегатных состояния

Во время приготовления пищи повара добавляют в блюда NaCl – пищевую соль. Наши бабушки, делая ремонт в домах, использовали для покраски стен белильную известь (CaOCl). Конечно, они растворяются в воде, но в нормальных условиях выглядят порошками и мы понимаем, что это неметаллы.

Металлы имеют прочную структуру, их невозможно помять, прогнуть. Достаточно вспомнить железный прут, бронзовую статую, свинцовую пулю. Есть, конечно, более податливые металлы — ртуть, медь, серебро, алюминий, натрий, рубидий. Они имеют металлический блеск, но обладают меньшей по сравнению с железом, свинцом, плотностью и могут деформироваться без особых усилий. Но и тут по внешнему виду можно определить, что предмет металлический. Мы привыкли так видеть окружающий мир, поэтому новые свойства привычных вещей могут ввести человека в ступор.

Химики видят вещества изнутри

Химики видят вещества с иной стороны. Они знают, что железо, ртуть и свинец, могут выглядеть иначе. В лабораторных условиях можно придать металлам газообразное состояние. Да, и даже тяжелые металлы, такие, как свинец и ртуть, могут летать.

Для этого используется специальное оборудование, в котором металлы закипают, превращаясь в газ. Ртуть закипает при 356,73°C, свинец при 1749°C, железо, при 2862°C. При этом происходит вполне стандартное кипение веществ со сменой кристаллической решетки и выходом пара наверх. После нормализации температурных условий пар оседает, превращаясь в капли металла.

Этим обусловлена ситуация, когда одежда металлургов на соответствующих предприятиях запачкана тончайшим слоем твердых веществ, так как при высоких температурах они превращаются в пар, а затем оседают.

В металлургии металлическая пыль — обычное дело

Конечно, железо никогда не поднимется в воздух без особых условий, это удел иллюзионистов и фокусников. Но умелое обращение с земными «твердынями» доказывает, что за наукой стоит наше будущее.

Создавая новые материалы, изучая свойства уже существующих, специалисты с каждым открытием делают технологичней наш мир.

Источник

Может ли металл стать газообразным

МЕТАЛЛЫ-ЖИДКОСТИ, МЕТАЛЛ-ГАЗ (!)

Все металлы — вещества твердые, твердые в той или иной степени. Это общее правило. Однако есть исключения.

Некоторые металлы скорее представляют собой жидкости. Крупинки галлия или цезий легко бы расплавились на ладони, потому что температура их плавления немногим менее 30 градусов. Франций, который пока в виде чистого металла не приготовлен, плавился бы уже при комнатной температуре. А вот всем известная ртуть — классический пример жидкого металла. Она замерзает при минус 39 градусах, почему и применяется для изготовления самых разнообразных термометров.

В этом отношении сильным конкурентом ртути оказывается галлий. И вот благодаря каким обстоятельствам. Ртуть закипает сравнительно быстро, примерно при 300 градусах. Значит, измерять высокие температуры с помощью ртутных термометров нельзя. А чтобы галлий превратился в пар, нужна температура 2000 градусов. Ни один металл не может так долго оставаться в жидком состоянии, иметь такую разницу между температурами плавления и кипения. Кроме галлия. Потому-то он настоящая находка для изготовления высокотемпературных термометров.


Металлы-жидкости, металл-газ

Еще один штрих, на сей раз совершенно удивительный. Ученые теоретически доказали: если бы существовал тяжелый аналог ртути (элемент с очень большим порядковым номером, неизвестный на Земле обитатель воображаемого восьмого этажа Большого дома), то его естественное состояние при обычных условиях было бы газообразное. Газ, обладающий химическими свойствами металла! Удастся ли когда-нибудь ученым познакомиться с таким уникумом?

Свинцовую проволоку можно расплавить в пламени спички. Оловянная фольга, брошенная в огонь, моментально превращается в каплю жидкого олова. А вот чтобы превратить в жидкость вольфрам, тантал или рений, приходится поднимать температуру выше 3000 градусов. Эти металлы расплавить труднее, чем все прочие. Вот почему нити накаливания в электрических лампах делают из вольфрама и рения.

Температуры кипения некоторых металлов достигают поистине грандиозных величин. Скажем, гафний закипает при 5400 градусах (!) — это почти температура поверхности Солнца.

Источник

Может ли сталь находится в газообразном состоянии

Может ли металл быть газом?

Да, металлы могут быть газами, в зависимости от того, насколько высока их температура кипения. Но действительно ли газообразные металлы считаются металлами?

Закройте на мгновение глаза и позвольте слову «металл» всплыть в вашей голове. А теперь ответьте: какой первый образ приходит вам на ум, когда вы думаете о «металле»?

Большинство из вас увидят твердый, блестящий твердый предмет — может быть, блестящий меч, гладкую машину или чистую посуду?

Слово «металл» ассоциируется у нас с твердыми объектами, потому что большинство металлов вокруг нас — это твердые тела. Но ограничиваются ли металлы только твердым телом? Могут ли они быть газом?

Может ли металл быть газом?

Да, конечно! Хотя металлы обычно находятся в твердом состоянии при комнатной температуре (вероятно, поэтому мы ассоциируем слово «металл» с твердыми объектами), металлы также могут быть газами.

Дело в том, что состояния вещества универсальны: металл может быть твердым, жидким или газообразным. Но это состояние определяется на основе правильных условий температуры и давления.

Например, металл, скажем, свинец, имеет температуру кипения 1740 градусов по Цельсию. Теперь вы знаете, что свинец в своем «естественном состоянии» представляет собой твердое вещество. Но когда вы начнете его нагревать, он сначала превратится в жидкость при 327 градусах Цельсия, а если вы продолжите подавать больше тепла, он превратится в газ при 1740 градусах Цельсия.

Свинец превращается в пар при 1740 градусах Цельсия.

Другой отличный пример — ртуть. Фактически, это металл с самой низкой температурой кипения (356,7 °C), что означает, что из всех металлов он превращается в газ при относительно более низкой температуре.

Но учтите, что пары ртути очень вредны. По данным Всемирной организации здравоохранения, «вдыхание паров ртути может оказывать вредное воздействие на нервную, пищеварительную и иммунную системы, легкие и почки и может быть фатальным. Неорганические соли ртути разъедают кожу, глаза и желудочно-кишечный тракт, а при попадании внутрь могут вызывать токсическое воздействие на почки«.

Ртуть весьма примечательна — это металл, который существует в жидком виде при комнатной температуре, а затем закипает при небольшой температуре.

А теперь давайте обсудим еще один аспект этой саги о превращении металла в газ.

Остается ли металл металлом, когда он превращается в газ?

Мы установили, что металлы могут превращаться в газы, если их нагреть до точки кипения. Но если металл нагревается до точки кипения и становится газом, остается ли он металлом? Другими словами, может ли металл находиться в газообразном состоянии и при этом оставаться металлом?

Газообразные металлы не сохраняют свойств своих твердых аналогов, включая металлические связи, металлическую проводимость, пластичность, блеск или другие металлические свойства. Вот почему металлы больше не считаются металлами, когда они переходят в газообразное состояние — это просто газ с определенными характерными свойствами «родительского» элемента. (тогда чем же они считаются? — В ЭТОЙ ТОЧКЕ ОНИ ЯВЛЯЮТСЯ ПРОСТО ГАЗОМ. РТУТЬ ЯВЛЯЕТСЯ МЕТАЛЛОМ, НО КОГДА ОНА КИПИТСЯ, ЕЕ ПАР НАЗЫВАЕТСЯ РТУТНЫМ ГАЗОМ/ПАРАМИ)

Но почему металлы твердые? Что в них такого особенного, что делает их твердыми?

Почему металлы вообще твердые?

Металлы твердые при комнатной температуре из-за того, как их последовательные атомы упаковываются внутри.

Видите ли, вся материя состоит из атомов. Состояние вещества зависит от того, насколько близко или далеко друг от друга находятся эти атомы.

Если составляющие атомы вещества находятся далеко друг от друга, то это вещество будет существовать в виде газа при комнатной температуре. Атомы в жидком состоянии относительно ближе друг к другу, но в твердых телах атомы упакованы вместе в плотные кристаллы.

Из-за сильных сил, которые удерживают эти атомы близко друг к другу, твердые тела жесткие и имеют определенную форму и размер (в отличие от жидкости и газа).

Металлы твердые при комнатной температуре, потому что входящие в их состав атомы металлов упаковываются близко друг к другу, придавая им жесткий или «затвердевший» внешний вид. Это также является причиной того, что металлы имеют высокую температуру плавления и не существуют в жидком состоянии при комнатной температуре.

В целом, металлы могут превращаться в газ, но как только они превращаются в газ, они не сохраняют своих металлических свойств.

Читайте также:  Что можно изготовить на фрезерном станке по металлу

Источник статьи: http://new-science.ru/mozhet-li-metall-byt-gazom/

Может ли сталь находится в газообразном состоянии

МЕТАЛЛЫ-ЖИДКОСТИ, МЕТАЛЛ-ГАЗ (!)

Все металлы — вещества твердые, твердые в той или иной степени. Это общее правило. Однако есть исключения.

Некоторые металлы скорее представляют собой жидкости. Крупинки галлия или цезий легко бы расплавились на ладони, потому что температура их плавления немногим менее 30 градусов. Франций, который пока в виде чистого металла не приготовлен, плавился бы уже при комнатной температуре. А вот всем известная ртуть — классический пример жидкого металла. Она замерзает при минус 39 градусах, почему и применяется для изготовления самых разнообразных термометров.

В этом отношении сильным конкурентом ртути оказывается галлий. И вот благодаря каким обстоятельствам. Ртуть закипает сравнительно быстро, примерно при 300 градусах. Значит, измерять высокие температуры с помощью ртутных термометров нельзя. А чтобы галлий превратился в пар, нужна температура 2000 градусов. Ни один металл не может так долго оставаться в жидком состоянии, иметь такую разницу между температурами плавления и кипения. Кроме галлия. Потому-то он настоящая находка для изготовления высокотемпературных термометров.


Металлы-жидкости, металл-газ

Еще один штрих, на сей раз совершенно удивительный. Ученые теоретически доказали: если бы существовал тяжелый аналог ртути (элемент с очень большим порядковым номером, неизвестный на Земле обитатель воображаемого восьмого этажа Большого дома), то его естественное состояние при обычных условиях было бы газообразное. Газ, обладающий химическими свойствами металла! Удастся ли когда-нибудь ученым познакомиться с таким уникумом?

Свинцовую проволоку можно расплавить в пламени спички. Оловянная фольга, брошенная в огонь, моментально превращается в каплю жидкого олова. А вот чтобы превратить в жидкость вольфрам, тантал или рений, приходится поднимать температуру выше 3000 градусов. Эти металлы расплавить труднее, чем все прочие. Вот почему нити накаливания в электрических лампах делают из вольфрама и рения.

Температуры кипения некоторых металлов достигают поистине грандиозных величин. Скажем, гафний закипает при 5400 градусах (!) — это почти температура поверхности Солнца.

Источник статьи: http://chemlib.ru/books/item/f00/s00/z0000001/st029.shtml

Тема: Три состояния вещества

Тема: Три состояния вещества

I. Как расположены молекулы в твёрдых телах и как они движутся?

Молекулы расположены на расстояниях меньших размеров самих молекул и перемещаются свободно относительно друг друга. Молекулы расположены на больших расстояниях друг от друга (по сравнению с размерами молекул) и движутся беспорядочно. Молекулы расположены в строгом порядке и колеблются около определённых положений равновесия.

II. Какие из приведённых ниже свойств принадлежат газам?

Имеют определённый объём Занимают объём всего сосуда Принимают форму сосуда Мало сжимаются Легко поддаются сжатию

III. Изменится ли объём газа, если его перекачать из сосуда вместимостью 1 литр в сосуд вместимостью 2 литра?

Увеличится в 2 раза Уменьшится в 2 раза Не изменится

IV. Молекулы расположены на больших расстояниях друг от друга (по отношению с размерами молекул), слабо взаимодействуют между собой, движутся хаотически. Какое это тело?

Газ Твёрдое тело Жидкость Такого тела нет

V. В каком состоянии может находиться сталь?

Только в твёрдом состоянии Только в жидком состоянии Только в газообразном Во всех трёх состояниях

Тема: Три состояния вещества

I. Как расположены молекулы жидкостей и как они движутся?

Молекулы расположены на расстояниях, соизмеримых с размерами самих молекул, и перемещаются свободно относительно друг друга. Молекулы расположены на больших расстояниях (по сравнению с размерами молекул) друг от друга и движутся беспорядочно. Молекулы расположены в строгом порядке и колеблются около определённых положений равновесия.

II. Какие из приведённых свойств принадлежат газам?

III. В мензурке находится вода объёмом 100 см3. Её переливают в стакан вместимостью 200 см3. Изменится ли объём воды?

Увеличится Уменьшится Не изменится

IV. Молекулы плотно упакованы, сильно притягиваются друг к другу, каждая молекула колеблется около определённого положения. Какое это тело?

Газ Жидкость Твёрдое тело Таких тел нет

V. В каком состоянии может находиться вода?

Только в жидком состоянии Только в газообразном состоянии Только в твёрдом состоянии Во всех трёх состояниях

Тема: Три состояния вещества

I. Как расположены молекулы газов и как они движутся?

Молекулы расположены на расстояниях, меньших размеров самих молекул, и перемещаются свободно относительно друг друга. Молекулы расположены на расстояниях, во много раз больше размеров самих молекул, и движутся беспорядочно. Молекулы расположены в строгом порядке и колеблются около определённых положений.

II. Какие из приведённых свойств принадлежат твёрдым телам?

Трудно изменить форму Занимают весь предоставленный им объём Сохраняют постоянную форму Легко меняют форму Трудно сжимаются

III. Изменится ли объём газа, если его перекачать из баллона вместимостью 20 литров в баллон вместимость.40 литров?

Увеличится в 2 раза Уменьшится в 2 раза Не изменится

IV. Есть ли такое вещество, у которого молекулы расположены на больших расстояниях, сильно притягиваются друг к другу и колеблются около определённых положений?

V. В каком состоянии может находиться ртуть?

Только в жидком Только в твёрдом Только в газообразном Во всех трёх состояниях

Тема: Три состояния вещества

I. Ниже указано поведение молекул в твёрдых, жидких и газообразных телах. Что является общим для жидкостей и газов?

То, что молекулы расположены на расстояниях меньших размеров самих молекул и движутся свободно относительно друг друга То, что молекулы расположены на больших расстояниях друг от друга и движутся беспорядочно То, что молекулы движутся беспорядочно друг относительно друга То, что молекулы расположены в строгом порядке и колеблются около определённых положений

II. Какие из указанных свойств принадлежат твёрдым телам?

Имеют определённый объём Занимают объём всего сосуда Принимают форму сосуда Мало сжимаются Легко сжимаются

III. В бутылке находится вода объёмом 0,5 литра. Её переливают в колбу вместимостью 1 литр. Изменится ли объём воды?

Увеличится Уменьшится Не изменится

IV. Молекулы расположены так, что расстояние между ними меньше размеров самих молекул. Они сильно притягиваются друг к другу и перемещаются с места на место. Какое это тело?

Газ Жидкость Твёрдое тело

V. В каком состоянии может находиться спирт?

Только в твёрдом состоянии Только в жидком состоянии Только в газообразном состоянии Во всех трёх состояниях

Источник статьи: http://pandia.ru/text/80/175/36529.php

Основные агрегатные состояния вещества

Агрегатные состояния вещества

Чтобы разобраться с тем, какими бывают агрегатные состояния, предлагаю по ходу чтения статьи заполнять таблицу.

Агрегатные состояния

Расположение молекул

Расстояние между молекулами

Движение молекулы

Лед, вода и водяной пар — это все три агрегатных состояния одного вещества. Лед — твердое состояние, вода — жидкая, пар — газообразное. Для каждого вещества существует три состояния.

Твердое состояние

Его очень легко представить — это любой предмет, который мы встречаем в жизни. В этом состоянии тело сохраняет форму и объем. Расстояние между молекулами, приблизительно равно размеру самих молекул, которые, в свою очередь, расположены очень структурированно.

Такая структура называется кристаллической решеткой — из-за четкой структуры молекулам сложно двигаться, и они просто колеблются около своих положений.

Агрегатные состояния

Расположение молекул

Расстояние между молекулами

Движение молекулы

в кристаллической решетке

соотносится с размером молекул

колеблется около своего положения в кристаллической решетке

Жидкое состояние

В этом состоянии сохраняется объем, но не сохраняется форма. Например, если перелить молоко из кувшина в стакан, то молоко, имевшее форму кувшина, примет форму стакана. Кстати, в корове у молока тоже была другая форма.

Расстояние между молекулами в жидком состоянии чуть больше, чем в твердом, но все равно невелико. При этом частицы не собраны в кристаллическую решетку, а расположены хаотично. Молекулы почти не двигаются, но при нагревании жидкости делают это более охотно.

Вспомните, что происходит, если залить чайный пакетик холодной водой — он почти не заваривается. А вот если налить кипяточку — чай точно будет готов.

Агрегатные состояния

Расположение молекул

Расстояние между молекулами

Движение молекулы

в кристаллической решетке

соотносится с размером молекул

колеблется около своего положения в кристаллической решетке

малоподвижны, при нагревании скорость движения молекул увеличивается

Газообразное состояние

В жизни мы встречаем газообразное состояние вещества, когда чувствуем запахи. Запах очень легко распространяется, потому что газ не имеет ни формы, ни объема (он занимает весь предоставленный ему объем), состоит из хаотично движущихся молекул, расстояние между которыми больше, чем размеры молекул.

Читайте также:  Магнит на цветной металл за веревку завязываешь кидать воду

Агрегатные состояния

Расположение молекул

Расстояние между молекулами

Движение молекулы

в кристаллической решетке

соотносится с размером молекул

колеблется около своего положения в кристаллической решетке

малоподвижны, при нагревании скорость движения молекул увеличивается

занимают предоставленный объем

С агрегатными состояниями разобрались, ура! Но до сих пор неясно, каким образом у каждого вещества их целых три, и как одно переходит в другое. Для этого узнаем, что такое фазовые переходы.

Фазовые переходы: изменение агрегатных состояний вещества

При изменении внешних условий (например, если внутренняя энергия тела увеличивается или уменьшается в результате нагревания или охлаждения) могут происходить фазовые переходы — изменения агрегатных состояний вещества.

Фазовые переходы интересны тем, что все живое не Земле существует лишь благодаря тому, что вода умеет превращаться в лед или пар. С кристаллизацией, плавлением, парообразованием и конденсацией связаны многие процессы металлургии и микроэлектроники.

На схеме — названия всех фазовых переходов:

Переход из твердого состояния в жидкое — плавление;

Переход из жидкого состояния в твердое — кристаллизация;

Переход из газообразного состояния в жидкое — конденсация;

Переход из жидкого состояния в газообразное — парообразование;

Переход из твердого состояния в газообразное, минуя жидкое — сублимация;

Переход из газообразного состояния в твердое, минуя жидкое — десублимация.

График фазовых переходов

Если взять процесс превращения льда в воду, воды — в пар, и обратные действия, то мы получим очень информативный график.

Разбираемся по шагам. Сначала взяли лед, конечно, при отрицательной температуре, потому что при нуле лед начинает плавиться. Нагрели лед до температуры плавления (до 0 градусов).

  • AB — нагревание льда

После того, как лед нагрелся до температуры плавления, он начинает плавиться. Плавление происходит при постоянной температуре тем дольше длится, чем больше масса плавящегося вещества. Еще этот процесс зависит от свойств самого вещества, но об этом немного позже.

  • BC — плавление льда

Расправившись вещество уже в жидком состоянии снова начинает нагреваться, и температура увеличивается, пока не достигает температуры кипения. В данном случае нагревается вода — это значит, что ее температура кипения равна 100 градусам Цельсия.

  • CD — нагревание воды

При 100 градусах вода кипит, пока не выкипит целиком. В данном случае процесс аналогично плавлению происходит при постоянной температуре. Данный процесс нельзя путать с испарением, потому что парообразование происходит при конкретной температуре, а испарение — при любой.

  • DE — кипение (парообразование) воды

Далее полученный пар нагревается, но путем нагревания невозможно дойти до другого фазового перехода — можно пойти только обратно.

  • EF — нагревание пара

Первый шаг в обратную сторону — охлаждение до температуры кипения.

  • FG — охлаждение пара

Дойдя до температуры кипения (в данном случае 100 градусов), пар начинает переходить в жидкое состояние. Этот процесс также происходит при постоянной температуре.

  • GH — конденсация пара

Сконденсировавшись, вода охлаждается, пока не начнет замерзать.

  • HI — охлаждение воды

Кристаллизуется (замерзает) вода при той же температуре, что и плавится лед — 0 градусов. Кристаллизация также происходит при постоянной температуре.

  • IK — кристаллизация воды

После кристаллизации лед охлаждается.

  • KL — охлаждение льда

С нагреванием и охлаждением все совсем просто — мы либо передаем теплоту телу (веществу), и оно идет на увеличение температуры, либо тело отдает тепло и охлаждается.

В остальных процессах температура не меняется. Это связано с тем, что количество теплоты не всегда зависит от температуры. Формулы для всех процессов выглядят так:

Q — количество теплоты [Дж]

c — удельная теплоемкость вещества [Дж/кг*˚C]

m — масса [кг]

tконечная — конечная температура [˚C]

tначальная — начальная температура [˚C]

Кристаллизация

Q — количество теплоты [Дж]

λ — удельная теплота плавления вещества [Дж/кг]

m — масса [кг]

Парообразование

Конденсация

Q — количество теплоты [Дж]

L — удельная теплота парообразования вещества [Дж/кг]

m — масса [кг]

Решение задач по фазовым переходам

С теорией разобрались — а теперь давайте практиковаться!

Задачка раз. Температура медного образца массой 100 г повысилась с 20 °С до 60 °С. Какое количество теплоты получил образец? Удельную теплоёмкость меди считать равной 380 Дж/(кг умножить на °С)

Сначала нужно перевести массу в килограммы:

Берем формулу количества теплоты для нагревания вещества:

Ответ: образец получил 1520 Дж

Задачка два. Какое количество теплоты необходимо для плавления 2,5 т стали, взятой при температуре плавления? Удельная теплота плавления стали λ=80кДж/кг. Теплопотерями пренебречь.

Сначала нужно перевести массу в килограммы и удельную теплоту в Дж/кг:

Берем формулу количества теплоты для плавления вещества:

Q = 80000*2500 = 200 000 000 Дж = 200 МДж

Ответ: для плавления 2,5 т стали необходимо 200 МДж теплоты.

Сублимация и десублимация

Мы уже рассказали про такие процессы, как сублимация и десублимация.

  • Переход из твердого состояния в газообразное, минуя жидкое — сублимация (возгонка);
  • Переход из газообразного состояния в твердое, минуя жидкое — десублимация.

Примерчики из жизни🤓

Про белье. Попробуйте повесить белье сушиться на улицу в мороз. Поскольку вода замерзает из-за низких температур, белье должно вернуться домой в виде большого айсберга, но этого не происходит — оно возвращается абсолютно сухим. В данном процессе произошла возгонка молекул воды (сублимация).

Про принтеры. Цветные принтеры (только не лазерные) печатают путем сублимации. Вот как это работает: частицы краски быстро переходят из твердого состояния в газообразное и оседают на бумаге — так получается цветная картинка.

Рисуночки на окнах. Если вы решите проехаться на автобусе в холодную погоду — увидете на стеклах чудесные узоры. Из-за огромной разницы температур между улицей и автобусом, мы можем наблюдать процесс десублимации в виде красивых рисунков на стеклах. Иней образуется похожим способом — резкое похолодание приводит к десублимации воздуха.

Влажность воздуха: испарение и конденсация

Такие процессы, как испарение и конденсация, становятся более логичными и простыми, если их рассмотреть на примере влажности воздуха.

Влажность воздуха говорит нам о том, сколько в воздухе содержится водяного пара. Любое количество пара в воздух не запихнешь, поэтому, во-первых, его там очень мало, а во-вторых, при избыточном количестве водяного пара происходит конденсация — это когда образуется роса.

Допустим, зимой при температуре -20 градусов в 1 литре воздуха содержится 1 миллиграмм пара. Относительная влажность в таком случае равна 100% — испарения не будет, больше пара в этот воздух уже не запихнешь. Но если мы тот же воздух поместим в помещение с температурой +20 градусов, то в него может испариться уже до 17 миллиграмм пара. Значит, что его влажность будет равна 1/17 = 6%. Человеку комфортнее всего находиться при значении влажности 40-50%.

Как влажность влияет на человека

Для человека влажность очень важна, потому что мы состоим из воды на 90%. Если окружающей среде нечего испарять, она будет испарять нас. Поэтому при низкой влажности мы чувствуем сухость во рту, а при высокой — волосы впитывают влагу, разбухают и начинают виться. На этом принципе построены некоторые гигрометры — приборы для измерения влажности. Они так и называются — волосяные гигрометры. Только внутри не человеческий волос, а конский, но принцип от этого не меняется.

При высокой влажности холод и тепло воспринимаются более чувствительно. Это связано с потливостью человека при высокой температуре. Такой механизм помогает нам бороться с жарой, но при высокой влажности пот не может испариться. При испарении пота мы теряем избыточное тепло, а в данном случае этого не происходит.

При низкой влажности происходит нечто похожее. Как ни странно, в мороз мы тоже потеем (намного меньше, но все-таки это происходит). Если влажность на улице низкая, то пот испарится из-под куртки и нам будет комфортно, а при высокой влажности — он там задержится и будет проводить тепло наружу, забирая у нас драгоценные Джоули тепла. Поэтому зимой в Петербурге холоднее, чем в Москве.

Влажностью можно управлять. Существуют мешочки с шариками адсорбентами, которые кладут в коробки с обувью, чтобы впитать лишнюю влагу. Чтобы окна не запотевали, можно насыпать в рамы соль, которая также впитает влагу. А если вам наоборот нужно больше влаги — берем увлажнитель воздуха (классная вещь!): он добавляет в воздух водяной пар.

Источник

Поделиться с друзьями
Металл