Металл который плавится при температуре руки

12 физ. и хим. характеристик металла, что плавится в руках

Металл который плавится в руке: понятие легкоплавкости + характеристика галлия + разбор термодинамических свойств химического элемента + физические/химические свойства металла + его область применения.

Многие из нас видели в интернете фото металла, который плавится в руке. Единственный химический элемент в природе, который может безопасно для здоровья человека, провернуть подобный трюк – галлий.

В сегодняшней статье мы разберем отличительные свойства группы легкоплавких металлов + предоставим характеристику элемента, тающего в руках его владельца.

Понятие легкоплавких металлов/сплавов

Легкоплавкость – понятие растяжимое, особенно это актуально для промышленности. В химии легкоплавкими считаются элементы группы металлов + их сплавы, температура плавления которых ниже порога в 1000 градусов Цельсия.

Если температура плавления металла превышает 1 500 градусов Цельсия – его принято выделять в группу тугоплавких. Диаграмма выше четко дает понять, куда какой металл следует относить.

Обратите внимание: минимальная температура плавления у ртути — 39 градусов. Именно благодаря такому физическому свойству, мы можем наблюдать химический элемент в постоянно жидком состоянии.

Теперь пройдемся по легкоплавким сплавам. В своем большинстве – это сплавы эвтектического типа, пиковая температура плавления которых не превышает 232 градусов по Цельсию. В основе производства легкоплавких сплавов лежат легкоплавкие металлы – олово, висмут, таллий, галлий и другие.

Ученым удалось добиться -78 градусов в качестве минимальной температуры плавления для советского сплава, который состоит на 12% из натрия, 47% калия и 41% цезия. Недостаток сплава — реакция с водой. Ближайший конкурент – амальгама. Токсичный сплав из ртути с таллием, сохраняющий жидкое состояние до температуры -61 градус по Цельсию.

Область применения легкоплавких металлов/сплавов:

  • энергетическая промышленность и машиностроение. Основное направление – создание тепловых носителей с жидкометаллического типа;
  • литьевая промышленность;
  • как основа для датчиков температуры, что актуально в системах пожарной безопасности;
  • как основа для разработки термометров;
  • как ремонтный материал в вакуумных технологиях;
  • припои, предохранители и прочие мелочи в микроэлектронике;
  • медицинское направление. То же протезирование;
  • как металлическая смазка.

Низкая температура плавления является базовых свойством, которое требуется от легкоплавких металлов и сплавов. Вторичные параметры, которые берутся во внимание в различных областях использования – плотность, прочность на разрыв и инертность в химическом плане.

Галлий: металл, который плавится в руках

Gallium (Ga) – металл, который плавится в руках при достижении температуры в 29.8 градуса по Цельсию . Учитывая стандартные 36.6 в организме человека, чтобы получить желаемый эффект, достаточно кусочек галлия положить на ладошку и наблюдать как тот медленно по ней растекается в разные стороны.

1) Общая информация по элементу

Внешне, галлий представляет собой мягкий или хрупкий металл (в зависимости от температуры), имеющий белый + серебристый оттенки. Иногда можно заметить синеватые отблески на поверхности чистого вещества.

Великий Менделеев заранее знал о данном химическом элементе. Впервые он просчитал некоторые свойства галлия еще в 1871 году. Изначальное название, присвоенное химиком, звучало как «экаалюминий».

К предугаданным свойствам галлия Менделеевым относились:

  • оксидный тип;
  • варианты связи с хлором;
  • медленная растворимость при соприкасании с щелочами/кислотами;
  • галлий не будет реагировать с кислородом;
  • возможность легкоплавкого металла образовывать основные соли;
  • химический элемент будет открыт при использовании спектроскопии.

Непосредственное выделение металла в чистом виде пришлось на француза Буабодраном. Открытие приходится на 1875 год. Из-за малого долевого содержания галлия в руде (менее 0.2%), пришлось потратить пару месяцев на получение минимального запаса чистого вещества для полноценного исследования его физических/химических свойств.

Физика галлия Химия галлия
Наличие нескольких модификаций полиморфного типа. Низкая химическая активность замедляет протекание химических реакций металла в твердом состоянии.
При нормальных условиях кристаллическая решетка имеет орторомбическую структуру. При повышении давления наблюдается образование 2 структур полиморфного типа с кубической и тетрагональной решетками. На воздухе галлий покрывается оксидной пленкой, которая предохраняет его от дальнейших реакций окисления.
Плотность галлия – 5.9 грамма на сантиметр кубический, а в жидком состоянии плотность увеличивается до 6.1 грамма на сантиметр кубический. В контакте с горячей водой, он вытесняет из нее водород, в результате чего образуется гидроксид галлия.
Сопротивление электричеству у галлия в твердом и жидком состояниях одинаковы и равны 0.5 на 10-8 Ом*см при температурном режиме в 0 градусов по Цельсию. Вступает в реакцию с паром (выше 340 градусов) и образует метагаллиевую кислоту.
Вязкость галлия колеблется в зависимости от температурного режима. При температуре в 100 градусов – 1.6 сантипуаз, а при 1000 градусов С – 0.6 сантипуаз. Может взаимодействовать с кислотами минерального типа – происходит выделение Н и образование солевых веществ.
Поверхностное натяжение составляет 0.74 ньютона на метр, а отражательный коэффициент от 71% до 76% при разной длине волн. Галлий инертен по отношению к водороду, азоту, углероду и кремнию.

В земной коре металл, который плавится в руках, встречается довольно часто. На 1 тонну земли приходится 19 грамм чистого вещества. В химическом аспекте, галлий – элемент рассеянного типа, располагающий двойной природой по геохимии. Хотя кларки вещества и большие, из-за его сильной склонности к изоморфизму, больших скоплений чистого галлия в природе не найти.

К основным минералам, где сравнительно высокое содержание галлия в чистом виде относят сфалерит (до 0.1%), биотит (до 0.1%) и натролит (до 0.1%). В остальных 10+ минералах, которые также применяются для добычи галлия, долевое содержание чистого вещества менее 0.1%. В морской воде галлий также присутствует, но его содержание крайне мало – всего 30 на 10-6 миллиграммов на литр жидкости.

2) Почему галлий – это металл, который плавится в руке?

Термодинамические свойства чистого галлия:

  • металл переходит из твердого в жидкое состояние при достижении температуры в 29.8 С или 302 градуса Кельвина;
  • металл закипает при достижении температуры в 2 448 градусов Кельвина;
  • удельная теплота плавления чистого галлия составляет 5600 Джоулей на моль;
  • удельная теплота по испарению составляет 270 000 джоулей на моль;
  • молярная теплоемкость составляет 26 джоулей, деленных на Кельвины, перемноженные на моли.

Главными поставщиками галлия на мировой рынок являются государства из Юго-Запада Африки, Российская Федерация и большинство стран СНГ. Галлий – металл, который не только плавится в руке, но и вещество, способное менять плотность при смене температурного режима на основании данного свойства можно провести интересный опыт.

Эксперимент: переводим галлий в жидкое состояние, а далее загоняем его в маленький стеклянный пузырек. По мере охлаждения емкости, металл станет постепенно превращаться в твердую субстанцию. Постепенно образующиеся кристаллы начнут расширяться, за счет чего колба рано или поздно треснет.

Во избежание повреждений со стороны зрителей, демонстрация должна проходить в изолированном пространстве с защитной перегородкой. Если слишком резко переохладить колбу, осколки могут разлететься в разные стороны в радиусе нескольких десятков метров.

Обзор свойств и характеристик плавящегося в руке металла, галлия:

3) Получение галлия + области применения металла в промышленности/быту

В основе добычи чистого вещества лежит галлит – редкий минерал, который является смесью галлия и сульфида меди. Наиболее часто он встречается в совокупности с такими минералами как сфалерит и германит. Странный факт, но в залежах каменных углей иногда реально найти галлит в размере 1.5% от всего объема добычи, что делает такие месторождения крайне важными стратегическими запасами для промышленного производства галлия.

Основные методы получения металлического галлия – это переработка боксита, нефелина и некоторые типы полиметаллических руд/угля.

Алгоритм извлечения галлия из руд:

  1. Электролиз с участием щелочных жидкостей, которые в свою очередь являются промежуточным продуктом с переработки бокситов в глинозем технического применения.
  2. Получение концентрированных растворов по методу спекания или через процесс Байера. В первом случае получаем до 70 миллиграмм на литр, а во втором до 160 миллиграмм на литр концентрата.
  3. Дальнейшая очистка галлия путем карбонизации.
  4. Обогащенный осадок отправляют в емкость с известью, вследствие чего получаем раствор.
  5. При помощи электролиза раствора получаем черновой вариант металла.
  6. Черновой галлий прогоняют через водяной напор.
  7. Смесь фильтруют при помощи пористых пластинок и греют в вакууме, из-за чего из чернового металла удаляются примеси летучего типа.
  8. В зависимости от степени чистоты конечного продукта, используют химический, электрохимический, либо физический методы разложения.

Эталонный вариант чистки может предоставить галлий с чистотой в 99.9%. В данном случае используется метод электрохимического рафинирования и восстановление с помощью очищенного водорода.

В промышленном плане у галлия нет широкого распространения. Металл сравнительно дорогой для металлургии + его физические/химические свойства редко где могут пригодиться для массового использования.

Где применяется галлий:

  • в соединениях с натрием металл применяют при создании лазеров полупроводникового типа с ультрафиолетовым и синим диапазонами;
  • как присадка к германию/кремнию;
  • как отражающий элемент для зеркал среднего качества. В чистом виде материал способен отражать порядка 89% света. Достоинства подобных изделий обусловливаются способностью металл к пропуску ультрафиолетовых лучей;
  • как компонент в смазочных материалах. Клеи с добавкой жидкого галлия весьма популярны и сегодня;
  • как замена ртути в кварцевых термометрах;
  • оксид галлия – это стратегически важный объект в производстве лазерных материалов.

Иногда галлий применяют как компонент для светящихся красок, а соли на основе металла являются катализаторами в аналитической химии, медицине и органическом синтезе. Чтобы купить 1 килограмма металла, который плавится в руках, потребуется выложить от 250 до 400 американских долларов в зависимости от степени чистоты химического элемента.

Источник

Галлий

Металл, который плавится в руке

Галлий — это серебристо-серый металл с синеватым отливом, достаточно хрупкий. В природе в чистом виде он не встречается и является рассеянным элементом. Среднее содержание галлия в земной коре составляет 19 г/т. Галлий содержится в минералах, преимущественно это сфалерит, магнетит, касситерит, гранат, берилл, турмалин, сподумен, флогопит, биотит, мусковит, серицит, лепидолит, хлорит, полевые шпаты, нефелин, гекманит и натролит. Достаточно редкий минерал галлит Cu­GaS₂ используют для выделения чистого галлия. Кроме того, галлий может быть получен в качестве побочного продукта переработки бокситов.

Галлий плавится всего при 29,76 °C, поэтому он тает даже в руке. При температуре, близкой к комнатной, плавятся еще три металла: ртуть, цезий и рубидий. Но из-за высокой токсичности или реакционной способности их, в отличие от галлия, нельзя брать в руки.

Как был открыт галлий

Существование галлия было предсказано Д. И. Менделеевым в 1871 на основании сформулированного им Периодического закона. Менделеев дал этому элементу название «экаалюминий» и предсказал у него такие свойства как плотность, температуру плавления. Также Менделеев предсказал:

  • характер оксида,
  • связь в соединениях с хлором.
  • что металл будет медленно растворяться в кислотах и щелочах;
  • он не будет реагировать с воздухом;
  • оксид экаалюминия M₂O₃ должен реагировать с кислотами с образованием солей MX₃;
  • что он должен образовывать основные соли;
  • хлорид обладает большей летучестью, чем Zn­Cl₂;
  • что этот элемент откроют с помощью спектроскопии.

Менделеев оказался Ностардамусом в химии: когда галлий был получен, все предсказанные ученым свойства подтвердились!

В 1875 году французский химик Поль Эмиль Лекок де Буабодран изучал сфалерит с помощью спектроскопии и обнаружил две фиолетовые линии, принадлежащие новому элементу. Год спустя ученый выделил новый элемент с помощью электролиза. Этот элемент Буабодран назвал в честь латинского названия Франции — Gal­lia. Существует легенда, что в это название ученый вкладывал и другой смысл. Лекок созвучно с французским le coq, т.е. «петух» (на латыни gal­lus). Буабодран как бы ненароком увековечил свое имя в названии нового элемента.

Изучая полученный галлий, Буабодран определил, что плотность отличается от предсказанной Менделеевым. Когда Менделеев узнал об этом, то написал французскому коллеге с рекомендацией перепроверить результаты. И как оказалось, не напрасно: первые данные Буабодрана действительно были неверными.

Области применения галлия

Бóльшая часть добываемого галлия используется для производства полупроводников. Арсенид (GaAs) и нитрид галлия (GaN) используются в электронных компонентах многих устройств, для создания интегральных схем, высокопроизводительных процессоров, микроволновых усилителей. Арсенид галлия используется в различных электрооптических инфракрасных приборах. Арсенид галлия-алюминия применяется для создания инфракрасных лазерных диодов высокой мощности. На основе нитрида галлия и нитрида индия-галлия производят синие и фиолетовые лазерные диоды. Кстати, лазер на нитриде галлия применяется в приводах Blu-ray дисков.

Фотоэлементы на основе арсенида галлия, фосфида и арсенида индия-галлия установлены на космических спутниках и марсоходах.

Галлий имеет интересную особенность: он сильно понижает температуру плавления сплавов, в которых содержится. При этом температура опускается ниже, чем у каждого компонента сплава по отдельности (эвтектические составы). Так, сплав Галинстан (68,5 % галлия, 21,5 % индия и 10 % олова) имеет температуру плавления -19 °С и используется в некоторых термометрах вместо ртути.

Галлий применяется и в медицине. В целом металл характеризуется низкой токсичностью и не выполняет естественной биологической функции. Поэтому препараты на основе галлия могут применяться при лечении и диагностике раковых заболеваний (изотопы галлий-67 и -68). Также галлий используется при лечении некоторых бактериальных инфекций: ион Ga³⁺ замещает Fe³⁺ в метаболических путях дыхания бактерий, вызывая их гибель. Препараты на основе галлия могут применяться при лечении малярии.

Еще галлий помогает обнаружить нейтрино-частицы, исходящие от Солнца. Как правило, выявление таких частиц — это весьма сложный и трудоемкий процесс. Галлий в составе регистрационной смеси повышает чувствительность анализа, а соответственно, и помогает зафиксировать нейтрино. Детекторы GALLEX Национальной лаборатории Гран-Сассо содержат 12,2 тонны галлия-71. Они улавливают нейтрино, исходящие от Солнца, и превращают его в радиоактивный изотоп, излучение которого можно зафиксировать. Подобные исследования также проводят в Баксанской нейтринной обсерватории (Кабардино-Балкария), где нейтрино-детекторы содержат 5 тонн жидкого галлия.

По температуре плавления галлия можно проверять термометры! Эта величина — 302,9146 K (29,7646 °C) – признана стандартом Международного бюро мер и весов.

В 2007 году с помощью пучков ионов галлия толщиной 7 нм в Si­mon Fras­er Uni­ver­si­ty напечатали самую маленькую в мире книгу – Tee­ny Ted from Turnip Town. Книга получилась размером 0,07x 0,10 мм.

У галлия есть еще одно забавное применение: ложки из галлия, по виду не отличимые от алюминиевых, используют для фокуса с исчезающей ложкой. В горячем чае или кофе такая ложка попросту расплавится!

Источник

как называется металл, который плавится в руке?

Такие легкоплавкие металлы есть, и их целых три. Во-первых, это — всем известная ртуть, охлаждённая ниже -39°С (при этой температуре она застывает). Такая ртуть конечно быстро расплавится в тёплой руке, но при этом нужно быть осторожным, чтобы не отморозить самому руку.

Второй такой металл — серебристо-белый, очень мягкий — цезий, который плавится при 26,4°С. Но с ним проводить опыт гораздо опаснее, чем с ртутью, так как здесь можно, наоборот, сильно обжечь руку: цезий на воздухе настолько быстро окисляется, что воспламеняется при этом.

Наконец третий легкоплавкий металл — галлий. Галлий плавится при 30°С, и поэтому при опыте руки должны быть не особенно холодными.

Такие легкоплавкие металлы есть, и их целых три. Во-первых, это — всем известная ртуть, охлаждённая ниже -39°С (при этой температуре она застывает) . Такая ртуть конечно быстро расплавится в тёплой руке, но при этом нужно быть осторожным, чтобы не отморозить самому руку.

Второй такой металл — серебристо-белый, очень мягкий — цезий, который плавится при 26,4°С. Но с ним проводить опыт гораздо опаснее, чем с ртутью, так как здесь можно, наоборот, сильно обжечь руку: цезий на воздухе настолько быстро окисляется, что воспламеняется при этом.

Наконец третий легкоплавкий металл — галлий, месторождения которого найдены в 1932 г. и у нас в СССР (в Сибири — в Западном Алтае) . Галлий плавится при 30°С, и поэтому при опыте руки должны быть не особенно холодными.

Источник

Читайте также:  Новосибирский завод драгоценных металлов
Поделиться с друзьями
Металл
Adblock
detector