Lioh это металл или неметалл

Содержание
  1. Гидроксид лития: способы получения и химические свойства
  2. Способы получения
  3. Качественная реакция
  4. Химические свойства
  5. Гидроксид лития
  6. Содержание
  7. Описание
  8. Получение
  9. Химические свойства
  10. Применение
  11. Примечания
  12. Полезное
  13. Смотреть что такое «Гидроксид лития» в других словарях:
  14. Литий
  15. Содержание
  16. История и происхождение названия
  17. Физические свойства
  18. Химические свойства
  19. Нахождение в природе
  20. Геохимия лития
  21. Месторождения
  22. Изотопы лития
  23. В космосе
  24. Получение
  25. Добыча
  26. Применение
  27. Термоэлектрические материалы
  28. Химические источники тока
  29. Лазерные материалы
  30. Окислители
  31. Дефектоскопия
  32. Пиротехника
  33. Сплавы
  34. Электроника
  35. Металлургия
  36. Металлургия алюминия
  37. Ядерная энергетика
  38. Литий-6
  39. Литий-7
  40. Сушка газов
  41. Медицина
  42. Смазочные материалы
  43. Регенерация кислорода в автономных аппаратах
  44. Силикатная промышленность
  45. Прочие области применения
  46. Биологическое значение лития

Гидроксид лития: способы получения и химические свойства

Гидроксид лития при стандартных условиях представляет собой бесцветные кристаллы. Растворяется в воде.

Относительная молекулярная масса Mr = 23, 95; относительная плотность для тв. и ж. состояния d = 1, 46; tпл = 471◦ C;

Способы получения

1. Гидроксид лития получают электролизом раствора хлорида лития :

2LiCl + 2H2O → 2LiOH + H2 + Cl2

2. При взаимодействии лития, оксида лития, гидрида лития и пероксида лития с водой также образуется гидроксид лития:

2Li + 2H2O → 2LiOH + H2

Li2O + H2O → 2LiOH

2LiH + 2H2O → 2LiOH + H2

3. Карбонат лития при взаимодействии с гидроксидом кальция образует гидроксид лития:

Качественная реакция

Качественная реакция на гидроксид лития — окрашивание фенолфталеина в малиновый цвет .

Химические свойства

1. Гидроксид лития реагируют со всеми кислотами (и сильными, и слабыми, и растворимыми, и нерастворимыми). При этом образуются средние или кислые соли, в зависимости от соотношения реагентов:

2. Гидроксид лития реагирует с кислотными оксидами . При этом образуются средние или кислые соли, в зависимости от соотношения реагентов:

3. Гидроксид лития реагирует с амфотерными оксидами и гидроксидами . При этом в расплаве образуются средние соли, а в растворе комплексные соли:

в растворе образуется комплексная соль — тетрагидроксоалюминат:

4. С кислыми солями гидроксид лития также может взаимодействовать. При этом образуются средние соли, или менее кислые соли:

5. Гидроксид лития взаимодействует с простыми веществами-неметаллами (кроме инертных газов, азота, кислорода, водорода и углерода).

При этом кремний окисляется до силиката и водорода:

Фтор окисляет щелочь. При этом выделяется молекулярный кислород:

Другие галогены, сера и фосфордиспропорционируют в растворе гидроксида лития:

Сера взаимодействует с гидроксидом лития только при нагревании:

6. Гидроксид лития взаимодействует с амфотерными металлами , кроме железа и хрома. При этом в расплаве образуются соль и водород:

В растворе образуются комплексная соль и водород:

2LiOH + 2Al + 6Н2О = 2Li[Al(OH)4] + 3Н2

7. Гидроксид лития вступает в обменные реакции с растворимыми солями .

Хлорид меди (II) реагирует с гидроксидом лития с образованием хлорида лития и осадка гидроксида меди (II):

2LiOH + CuCl2 = Cu(OH)2↓+ 2LiCl

Также с гидроксидом лития взаимодействуют соли аммония .

Например , при взаимодействии хлорида аммония и гидроксида лития образуются хлорид лития, аммиак и вода:

NH4Cl + LiOH = NH3 + H2O + LiCl

8. Гидроксид лития разлагается при нагревании до температуры 600°С:

2LiOH → Li2O + H2O

9. Гидроксид лития проявляет свойства сильного основания. В воде практически полностью диссоциирует , образуя щелочную среду и меняя окраску индикаторов.

LiOH ↔ Li + + OH —

10. Гидроксид лития в расплаве подвергается электролизу . При этом на катоде восстанавливается сам литий, а на аноде выделяется молекулярный кислород:

4LiOH → 4Li + O2 + 2H2O

Источник

Гидроксид лития

Гидроксид лития
Общие
Систематическое наименование Гидроксид лития
Химическая формула LiOH
Эмпирическая формула LiOH
Физические свойства
Состояние (ст. усл.) твёрдое
Молярная масса 23,94637 г/моль
Плотность 1,46 (25 °C) г/см³
Термические свойства
Температура плавления 462 [1] °C
Температура кипения 925 [1] °C
Температура разложения 930 [1] °C
Энтальпия образования (ст. усл.) -487,2 кДж/моль
Химические свойства
Растворимость в воде 12,7 (0 °C) г/100 мл
Классификация
Рег. номер CAS 1310-65-2
RTECS OJ6307070

Гидроксид лития — неорганическое основание щелочного металла лития, имеющее формулу LiOH.

Содержание

Описание

Гидроксид лития при стандартных условиях представляет собой бесцветные кристаллы с тетрагональной решёткой. [2] При работе с ним необходимо проявлять осторожность, избегать попадания на кожу и слизистые оболочки.

Получение

  • Взаимодействие металлического лития с водой:

  • Взаимодействие оксида лития с водой:

  • Взаимодействие карбоната лития с гидроксидом кальция:

  • Обменными реакциями:

Химические свойства

  • Взаимодействие с кислотами с образованием соли и воды(реакция нейтрализации):

  • Взаимодействие с кислотными оксидами с образованием соли и воды:

  • При нагревании в инертной атмосфере (H2) разлагается:

Применение

Гидроксид лития используют для получения солей лития; как компонент электролитов в щелочных аккумуляторах и поглотитель углекислого газа в противогазах, подводных лодках и космических кораблях. Он также используется как катализатор полимеризации. Применяется в стекольной и керамической промышленности. При производстве водоупорных смазочных материалов, обладающих механической стабильностью в широком диапазоне температур.

Примечания

H + Li + K + Na + NH4 + Ba 2+ Ca 2+ Mg 2+ Sr 2+ Al 3+ Cr 3+ Fe 2+ Fe 3+ Ni 2+ Co 2+ Mn 2+ Zn 2+ Ag + Hg 2+ Hg2 2+ Pb 2+ Sn 2+ Cu + Cu 2+
OH − P P P P М Н М Н Н Н Н Н Н Н Н Н Н Н Н
F − P Н P P Р М Н Н М Р Н Н Н Р Р М Р Р М М Н Р Н Р
Cl − P P P P Р Р Р Р Р Р Р Р Р Р Р Р Р Н Р Н М Н Р
Br − P P P P Р Р Р Р Р Р Р Р Р Р Р Р Р Н М Н М Р H Р
I − P P P P Р Р Р Р Р Р ? Р Р Р Р Р Н Н Н Н М Н
S 2− P P P P Р М Н Р Н Н Н Н Н Н Н Н Н Н Н Н
SO3 2− P P P P Р М М М Н ? ? М ? Н Н Н М Н Н Н Н ? Н ?
SO4 2− P P P P Р Н М Р Н Р Р Р Р Р Р Р Р М Н Н Р Р Р
NO3 P P P P Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р
NO2 P P P P Р Р Р Р Р ? ? ? ? Р М ? ? М ? ? ? ? ? ?
PO4 3− P Н P P Н Н Н Н Н Н Н Н Н Н Н Н Н Н ? Н Н Н Н
CO3 2− М Р P P Р Н Н Н Н Н Н Н Н Н Н ?
CH3COO − P Р P P Р Р Р Р Р Р Р Р Р Р Р Р Р М Р Р Р
CN − P Р P P Р Р Р Р Р ? Н Н Н Н Н Н Н Р Н Р Н
SiO3 2− H Н P P ? Н Н Н Н ? ? Н ? ? ? Н Н ? ? ? Н ? ? ?
Читайте также:  Станок электропила по металлу

Wikimedia Foundation . 2010 .

Полезное

Смотреть что такое «Гидроксид лития» в других словарях:

Гидроксид алюминия — Гидроксид алюминия, вещество с формулой (а также … Википедия

Гидроксид калия — Гидроксид калия … Википедия

Гидроксид железа(II) — У этого термина существуют и другие значения, см. Гидроксиды железа. Гидроксид железа(II) … Википедия

Гидроксид хрома(II) — Общие Систематическое наименование Гидроксид хрома(II) Традиционные названия гидроокись хрома Химическая формула Сr(OH)2 Физические свойства … Википедия

Гидроксид хрома(III) — Гидроксид хрома (III) сложное неорганическое вещество с химической формулой Cr(OH)3. Описание Гидроксид хрома (III) амфотерный гидроксид. Серо зеленого цвета, разлагается при нагревании, теряя воду и образуя зеленый метагидроксид CrO(OH). Не… … Википедия

Гидроксид марганца(II) — Общие Систематическое наименование Гидроксид марганца(II) Традиционные названия Гидроокись марганца Химическая формула Mn(OH)2 Физические свойства … Википедия

ЛИТИЯ ГИДРОКСИД — LiOH, сильное основание (щелочь). Бесцветные кристаллы. Хорошо растворим в воде. Применяют: в щелочных аккумуляторах, для получения смазок; соединения лития, как поглотитель CO2 в противогазах, подводных лодках, самолетах и космических кораблях … Большой Энциклопедический словарь

лития гидроксид — LiOH, сильное основание (щёлочь). Бесцветные кристаллы. Хорошо растворим в воде. Применяют в щелочных аккумуляторах, для получения смазок, соединения лития, как поглотитель CO2 в противогазах, подводных лодках, самолётах и космических кораблях. * … Энциклопедический словарь

ЛИТИЯ ГИДРОКСИД — LiOH, бесцв. кристаллы с тетрагон, решеткой ( а =0,3549 нм, с= 6,4334 нм, z = 2, пространств. группа Р4/ птт); т. пл. 473 °С, при более высокой т ре испаряется и частично диссоциирует на Li2O и Н 2 О; в парах при 820 870 °С содержится 90% … Химическая энциклопедия

ЛИТИЯ ГИДРОКСИД — LiOH, сильное основание (щёлочь). Бесцв. кристаллы. Хорошо растворим в воде. Применяют в щелочных аккумуляторах, для получения смазок, соед. лития, как поглотитель СО2 в противогазах, подводных лодках, самолётах и космич. кораблях … Естествознание. Энциклопедический словарь

Источник

Литий

Литий
Очень лёгкий, очень мягкий металл серебристо-белого цвета
Название, символ, номер литий / Lithium (Li), 3 Атомная масса
(молярная масса) [6,938; 6,997]а. е. м. (г/моль) Электронная конфигурация [He] 2s 1 Радиус атома 145 пм Ковалентный радиус 134 пм Радиус иона 76 (+1e) пм Электроотрицательность 0,98 (шкала Полинга) Электродный потенциал -3,06В Степени окисления +1 Энергия ионизации
(первый электрон) 519,9 (5,39) кДж/моль (эВ) Плотность (при н. у.) 0,534 г/см³ Температура плавления 453,69 K (180,54 °C, 356,97 °F) Температура кипения 1613 K (1339,85 °C, 2443,73 °F) Уд. теплота плавления 2,89 кДж/моль Уд. теплота испарения 148 кДж/моль Молярная теплоёмкость 24,86 Дж/(K·моль) Молярный объём 13,1 см³/моль Структура решётки кубическая объёмноцентрированная Параметры решётки 3,490 Å Температура Дебая 400 K Теплопроводность (300 K) 84,8 Вт/(м·К) Номер CAS 7439-93-2

Литий (Li, лат. lithium ) — химический элемент первой группы, второго периода периодической системы с атомным номером 3. Как простое вещество представляет собой мягкий щелочной металл серебристо-белого цвета.

Содержание

  • 1 История и происхождение названия
  • 2 Физические свойства
  • 3 Химические свойства
  • 4 Нахождение в природе
    • 4.1 Геохимия лития
    • 4.2 Месторождения
    • 4.3 Изотопы лития
    • 4.4 В космосе
  • 5 Получение
    • 5.1 Добыча
  • 6 Применение
    • 6.1 Термоэлектрические материалы
    • 6.2 Химические источники тока
    • 6.3 Лазерные материалы
    • 6.4 Окислители
    • 6.5 Дефектоскопия
    • 6.6 Пиротехника
    • 6.7 Сплавы
    • 6.8 Электроника
    • 6.9 Металлургия
      • 6.9.1 Металлургия алюминия
    • 6.10 Ядерная энергетика
      • 6.10.1 Литий-6
      • 6.10.2 Литий-7
    • 6.11 Сушка газов
    • 6.12 Медицина
    • 6.13 Смазочные материалы
    • 6.14 Регенерация кислорода в автономных аппаратах
    • 6.15 Силикатная промышленность
    • 6.16 Прочие области применения
  • 7 Биологическое значение лития
  • 8 Цены

История и происхождение названия

Литий был открыт в 1817 году шведским химиком и минералогом Иоганном Арфведсоном сначала в минерале петалите (Li,Na)[Si4AlO10], а затем в сподумене LiAl[Si2O6] и в лепидолите K2Li3Al5[Si6O20](F,OH)4. Металлический литий впервые получил Гемфри Дэви в 1818 году.

Своё название литий получил из-за того, что был обнаружен в «камнях» (греч. λίθος — камень). Первоначально назывался «литион», современное название было предложено Берцелиусом.

Физические свойства

Литий — серебристо-белый металл, мягкий и пластичный, твёрже натрия, но мягче свинца. Его можно обрабатывать прессованием и прокаткой.

При комнатной температуре металлический литий имеет кубическую объёмноцентрированную решётку (координационное число 8), пространственная группа I m3m, параметры ячейки a = 0,35021 нм, Z = 2. Ниже 78 К устойчивой кристаллической формой является гексагональная плотноупакованная структура, в которой каждый атом лития имеет 12 ближайших соседей, расположенных в вершинах кубооктаэдра. Кристаллическая решётка относится к пространственной группе P 63/mmc, параметры a = 0,3111 нм, c = 0,5093 нм, Z = 2.

Из всех щелочных металлов литий характеризуется самыми высокими температурами плавления и кипения (180,54 и 1340 °C, соответственно), у него самая низкая плотность при комнатной температуре среди всех металлов (0,533 г/см³, почти в два раза меньше плотности воды). Вследствие своей низкой плотности литий всплывает не только в воде, но и, например, в керосине.

Маленькие размеры атома лития приводят к появлению особых свойств металла. Например, он смешивается с натрием только при температуре ниже 380 °C и не смешивается с расплавленными калием, рубидием и цезием, в то время как другие па́ры щелочных металлов смешиваются друг с другом в любых соотношениях.

Химические свойства

Литий является щелочным металлом, однако относительно устойчив на воздухе. Литий является наименее активным щелочным металлом, с сухим воздухом (и даже с сухим кислородом) при комнатной температуре практически не реагирует. По этой причине литий является единственным щелочным металлом, который не хранят в керосине (к тому же плотность лития столь мала, что он будет в нём плавать); он может непродолжительное время храниться на воздухе.

Во влажном воздухе медленно реагирует с азотом и другими газами, находящимися в воздухе, превращаясь в нитрид Li3N, гидроксид LiOH и карбонат Li2CO3.

Поэтому длительно литий хранят в петролейном эфире, парафине, газолине и/или минеральном масле в герметически закрытых жестяных коробках.

В кислороде при нагревании горит, превращаясь в оксид Li2O.

Интересная особенность лития в том, что в интервале температур от 100 °C до 300 °C он покрывается плотной оксидной плёнкой и в дальнейшем не окисляется. В отличие от остальных щелочных металлов, дающих стабильные надпероксиды и озониды; надпероксид и озонид лития — нестабильные соединения.

В 1818 немецкий химик Леопольд Гмелин установил, что литий и его соли окрашивают пламя в карминово-красный цвет, это является качественным признаком для определения лития. Температура самовоспламенения находится в районе 300 °C. Продукты горения раздражают слизистую оболочку носоглотки.

Спокойно, без взрыва и возгорания, реагирует с водой, образуя LiOH и H2.

Реагирует также с этиловым спиртом (с образованием этанолята):

Вступает в реакцию с водородом (при 500—700 °C) с образованием гидрида лития:

Реагирует с аммиаком при нагревании, при этом сначала образует амид лития (220 °C), а затем имид лития (400 °C):

Реагируя с галогенами (с йодом — только при нагревании, выше 200 °C) образует соответствующие галогениды:

При 130 °C реагирует с серой с образованием сульфида:

В вакууме при температуре выше 200 °C реагирует с углеродом (образуется ацетиленид):

При 600—700 °C литий реагирует с кремнием с образованием силицида:

Химически растворим в жидком аммиаке (−40 °C), образуется синий раствор.

В водном растворе ион лития имеет самый низкий стандартный электродный потенциал (−3,045 В) из-за малого размера и высокой степени гидратации иона лития.

Металлический литий вызывает ожоги при попадании на влажную кожу, слизистые оболочки и в глаза.

Нахождение в природе

Геохимия лития

Литий по геохимическим свойствам относится к крупноионным литофильным элементам, в числе которых калий, рубидий и цезий. Содержание лития в верхней континентальной коре составляет 21 г/т, в морской воде 0,17 мг/л .

Основные минералы лития — слюда лепидолит — KLi1,5Al1,5[Si3AlO10](F, OH)2 и пироксен сподумен — LiAl[Si2O6]. Когда литий не образует самостоятельных минералов, он изоморфно замещает калий в широко распространённых породообразующих минералах.

Месторождения лития приурочены к редкометалльным гранитным интрузиям, в связи с которыми развиваются литиеносные пегматиты или гидротермальные комплексные месторождения, содержащие также олово, вольфрам, висмут и другие металлы. Стоит особо отметить специфические породы онгониты — граниты с магматическим топазом, высоким содержанием фтора и воды и исключительно высокими концентрациями различных редких элементов, в том числе и лития.

Другой тип месторождений лития — рассолы некоторых сильносолёных озёр.

Месторождения

Месторождения лития известны в Чили, Боливии (Солончак Уюни — крупнейшее в мире), США, Аргентине, Конго, Китае (озеро Чабьер-Цака), Бразилии, Сербии, Австралии.

В России более 50 % запасов сосредоточено в редкометалльных месторождениях Мурманской области.

Изотопы лития

Природный литий состоит из двух стабильных изотопов: 6 Li (7,5 %) и 7 Li (92,5 %); в некоторых образцах лития изотопное соотношение может быть сильно нарушено вследствие природного или искусственного фракционирования изотопов. Это следует иметь в виду при точных химических опытах с использованием лития или его соединений. У лития известны 7 искусственных радиоактивных изотопов ( 4 Li − 12 Li) и два ядерных изомера ( 10m1 Li и 10m2 Li). Наиболее устойчивый из них, 8 Li, имеет период полураспада 0,8403 с. Экзотический изотоп 3 Li (трипротон), по-видимому, не существует как связанная система.

7 Li является одним из немногих изотопов, возникших при первичном нуклеосинтезе (то есть в период от 1 секунды до 3 минут после Большого Взрыва) в количестве не более 10 −9 от всех элементов. Некоторое количество изотопа 6 Li, как минимум в десять тысяч раз меньшее, чем 7 Li, также образовано в первичном нуклеосинтезе.

Примерно в десять раз больше 7 Li образовались в звёздном нуклеосинтезе. Литий является промежуточным продуктом реакции ppII, но при высоких температурах активно преобразуется в два ядра гелия-4 (через 8 Be).

В космосе

Аномально высокое содержание лития наблюдается в звёздных образованиях, состоящих из красного гиганта (или сверхгиганта), внутри которого находится нейтронная звезда — объектах Ландау — Торна — Житкова.

Также имеется большое количество звёзд-гигантов с необычно высоким содержанием лития, что объясняется попаданием лития в атмосферу звёзд при поглощении ими экзопланет-гигантов.

Получение

Исходным сырьём для лития служат два источника: минеральное сырьё (например, сподумен) и солевые растворы из соляных озёр, богатые солями лития. В обоих случаях результатом работы является карбонат лития Li2CO3.

Сподумен (силикат лития и алюминия) можно перерабатывать несколькими способами. Например, спеканием с сульфатом калия получают растворимый сульфат лития, который осаждают из раствора содой:

Солевые растворы предварительно выпаривают. В солевых растворах содержится хлорид лития LiCl. Однако вместе с ним содержатся большие количества других хлоридов. Для увеличения концентрации лития из выпаренного раствора осаждают карбонат лития Li2CO3, например по схеме

2LiCl + Na2CO3 ⟶ Li2CO3↓ + 2NaCl . Получение металла

Металлический литий чаще всего получают электролизом расплава солей или восстановлением из оксида.

При электролизе используется хлорид лития. Его получают из карбоната по схеме:

Поскольку температура плавления хлорида лития близка к температуре кипения лития, применяют эвтектическую смесь с хлоридом калия или бария, что понижает температуру расплава и позволяет избавиться от необходимости улавливать пары металла. Расход электроэнергии до 14 кВт∙ч на 1 кг лития. На другом электроде получают газообразный хлор.

Поскольку литий — активный металл, его восстановление из оксидов или галогенидов возможно только при немедленном удалении лития из зоны реакции. В противном случае невозможно сместить баланс реакции в нужную сторону. Литий удаляют из зоны реакции путём поддержания температур, при которых литий испаряется и покидает зону реакции в виде паров. Другие реагенты при этом должны оставаться в расплаве. Для восстановления используются кремний или алюминий, например:

2Li2O + Si ⟶ 4Li↑ + SiO2 Рафинирование

Полученный литий очищают методом вакуумной дистилляции, последовательно выпаривая разные металлы из сплава при определённых температурах.

Добыча

В 2015 году в мире добыли 32,5 тыс. тонн лития и его соединений в пересчёте на металл. Крупнейшие страны по добыче — Австралия, Чили и Аргентина. В России собственная добыча лития была полностью утрачена после распада СССР, но в 2017 году Россия запустила экспериментальную установку, позволяющую добывать литий из бедных руд с небольшими затратами.

Большая часть добывается из естественных водных линз в толще соляных озёр, в насыщенных соляных растворах которых концентрируется хлорид лития. Раствор выкачивается и выпаривается на солнце, полученная смесь солей перерабатывается. Содержание лития в растворе колеблется от 0,01 % до 1 %. Также значительная доля добычи приходится на минеральное сырьё, например, минерал сподумен.

Применение

Термоэлектрические материалы

Сплав сульфида лития и сульфида меди — эффективный полупроводник для термоэлектропреобразователей (ЭДС около 530 мкВ/К ).

Химические источники тока

Из лития изготовляют аноды химических источников тока (аккумуляторов, например, литий-хлорных аккумуляторов) и гальванических элементов с твёрдым электролитом (например, литий-хромсеребряный, литий-висмутатный, литий-окисномедный, литий-двуокисномарганцевый, литий-иодсвинцовый, литий-иодный, литий-тионилхлоридный, литий-оксидванадиевый, литий-фторомедный, литий-двуокисносерный элементы), работающих на основе неводных жидких и твёрдых электролитов (тетрагидрофуран, пропиленкарбонат, метилформиат, ацетонитрил).

Кобальтат лития и молибдат лития показали лучшие эксплуатационные свойства и энергоёмкость в качестве положительного электрода литиевых аккумуляторов.

Гидроксид лития используется как один из компонентов для приготовления электролита щелочных аккумуляторов. Добавление гидроксида лития к электролиту тяговых железо-никелевых, никель-кадмиевых, никель-цинковых аккумуляторных батарей повышает их срок службы в 3 раза и ёмкость на 21 % (за счёт образования никелатов лития).

Алюминат лития — наиболее эффективный твёрдый электролит (наряду с цезий-бета-глинозёмом).

Лазерные материалы

Монокристаллы фторида лития используются для изготовления высокоэффективных (КПД 80 %) лазеров на центрах свободной окраски и для изготовления оптики с широкой спектральной полосой пропускания.

Окислители

Перхлорат лития используют в качестве окислителя.

Дефектоскопия

Сульфат лития используют в дефектоскопии.

Пиротехника

Нитрат лития используют в пиротехнике для окрашивания огней в красный цвет.

Сплавы

Сплавы лития с серебром и золотом, а также медью являются очень эффективными припоями. Сплавы лития с магнием, скандием, медью, кадмием и алюминием — новые перспективные материалы в авиации и космонавтике (из-за их лёгкости). На основе алюмината и силиката лития создана керамика, затвердевающая при комнатной температуре и используемая в военной технике, металлургии, и, в перспективе, в термоядерной энергетике. Огромной прочностью обладает стекло на основе литий-алюминий-силиката, упрочняемого волокнами карбида кремния. Литий очень эффективно упрочняет сплавы свинца и придаёт им пластичность и стойкость против коррозии.

Электроника

Триборат лития-цезия используется как оптический материал в радиоэлектронике. Кристаллические ниобат лития LiNbO3 и танталат лития LiTaO3 являются нелинейными оптическими материалами и широко применяются в нелинейной оптике, акустооптике и оптоэлектронике.
Литий также используется при наполнении осветительных газоразрядных металлогалогеновых ламп.
Гидроксид лития добавляют в электролит щелочных аккумуляторов для увеличения срока их службы.

Металлургия

В чёрной и цветной металлургии литий используется для раскисления и повышения пластичности и прочности сплавов. Литий иногда применяется для восстановления методами металлотермии редких металлов.

Металлургия алюминия

Карбонат лития является важнейшим вспомогательным веществом (добавляется в электролит) при выплавке алюминия, и его потребление растёт с каждым годом пропорционально объёму мировой добычи алюминия (расход карбоната лития 2,5—3,5 кг на тонну выплавляемого алюминия).

Введение лития в систему легирования позволяет получить новые сплавы алюминия с высокой удельной прочностью.

Добавка лития снижает плотность сплава и повышает модуль упругости. При содержании лития до 1,8 % сплав имеет низкое сопротивление коррозии под напряжением, а при 1,9 % сплав не склонен к коррозионному растрескиванию. Увеличение содержания лития до 2,3 % способствует возрастанию вероятности образования рыхлот и трещин. Механические свойства при этом изменяются: пределы прочности и текучести возрастают, а пластические свойства снижаются.

Наиболее известны системы легирования Al-Mg-Li (пример — сплав 1420, применяемый для изготовления конструкций летательных аппаратов) и Al-Cu-Li (пример — сплав 1460, применяемый для изготовления ёмкостей для сжиженных газов).

Ядерная энергетика

Изотопы 6 Li и 7 Li обладают разными ядерными свойствами (сечение поглощения тепловых нейтронов, продукты реакций) и сфера их применения различна. Гафниат лития входит в состав специальной эмали, предназначенной для захоронения высокоактивных ядерных отходов, содержащих плутоний.

Литий-6

Применяется в термоядерной энергетике.

При облучении нуклида 6 Li тепловыми нейтронами получается радиоактивный тритий 3 H:

Благодаря этому литий-6 может применяться как замена радиоактивного, нестабильного и неудобного в обращении трития как в военных (термоядерное оружие), так и в мирных (управляемый термоядерный синтез) целях. В термоядерном оружии обычно применяется дейтерид лития-6 6 LiD.

Перспективно также использование лития-6 для получения гелия-3 (через тритий) с целью дальнейшего использования в дейтерий-гелиевых термоядерных реакторах.

Литий-7

Применяется в ядерных реакторах. Благодаря очень высокой удельной теплоёмкости и низкому сечению захвата тепловых нейтронов жидкий литий-7 (часто в виде сплава с натрием или цезием) служит эффективным теплоносителем. Фторид лития-7 в сплаве с фторидом бериллия (66 % LiF + 34 % BeF2) носит название «флайб» (FLiBe) и применяется как высокоэффективный теплоноситель и растворитель фторидов урана и тория в высокотемпературных жидкосолевых реакторах, и для производства трития.

Соединения лития, обогащённые по изотопу лития-7, применяются на реакторах PWR для поддержания водно-химического режима, а также в деминерализаторе первого контура. Ежегодная потребность США оценивается в 200—300 кг , производством обладают лишь Россия и Китай.

Сушка газов

Высокогигроскопичные бромид LiBr и хлорид лития LiCl применяются для осушения воздуха и других газов.

Медицина

Соли лития обладают нормотимическими и другими лечебными свойствами. Поэтому они находят применение в медицине.

Смазочные материалы

Стеарат лития («литиевое мыло») используется в качестве загустителя для получения пастообразных высокотемпературных смазок машин и механизмов. См. напр.: Литол, ЦИАТИМ-201.

Регенерация кислорода в автономных аппаратах

Гидроксид лития LiOH, пероксид Li2O2 применяются для очистки воздуха от углекислого газа; при этом последнее соединение реагирует с выделением кислорода (например, 2Li2O2 + 2CO2 → 2Li2CO3 + O2), благодаря чему используется в изолирующих противогазах, в патронах для очистки воздуха на подлодках, на пилотируемых космических аппаратах и т. д.

Силикатная промышленность

Литий и его соединения широко применяют в силикатной промышленности для изготовления специальных сортов стекла и покрытия фарфоровых изделий.

Прочие области применения

Соединения лития используются в текстильной промышленности (отбеливание тканей), пищевой (консервирование) и фармацевтической (изготовление косметики).

Весьма перспективно использовать литий в качестве наполнителя поплавка батискафов — этот металл имеет плотность, почти в два раза меньшую, чем вода (точнее, 534 кг/м³), это значит, что один кубический метр лития может удерживать на плаву почти на 170 кг больше, чем один кубический метр бензина. Однако литий — щелочной металл, активно реагирующий с водой, следует каким-то образом надёжно разделить эти вещества, не допустить их контакта.

Из лития изготавливают аноды химических источников тока (например, литий-хлорных аккумуляторов) и гальванических элементов с твёрдым электролитом (например, литий-хромсеребряный, литий-висмутатный, литий-окисномедный, литий-двуокисномарганцевый, литий-иодсвинцовый, литий-иодный, литий-тионилхлоридный, литий-оксидванадиевый, литий-фторомедный, Литий-двуокисносерный элементы), работающих на основе неводных жидких и твёрдых электролитов (тетрагидрофуран, пропиленкарбонат, метилформиат, ацетонитрил). Кобальтат лития и молибдат лития показали лучшие эксплуатационные свойства и энергоёмкость в качестве положительного электрода литиевых аккумуляторов. Гидроксид лития используется как один из компонентов для приготовления электролита щелочных аккумуляторов. Добавление гидроксида лития к электролиту тяговых железо-никелевых, никель-кадмиевых, никель-цинковых аккумуляторных батарей повышает их срок службы в 3 раза и ёмкость на 21 % (за счёт образования никелатов лития). Алюминат лития — наиболее эффективный твёрдый электролит (наряду с цезий-бета-глинозёмом). Триборат лития-цезия используется как оптический материал в радиоэлектронике. Кристаллические ниобат лития LiNbO3 и танталат лития LiTaO3 являются нелинейными оптическими материалами и широко применяются в нелинейной оптике, акустооптике и оптоэлектронике. Литий также используется при наполнении осветительных газоразрядных металлогалогеновых ламп. Гидроксид лития добавляют в электролит щелочных аккумуляторов для увеличения срока их службы.

Биологическое значение лития

Литий в небольших количествах необходим организму человека (порядка 100 мкг/день для взрослых). Преимущественно в организме находится в щитовидной железе, лимфоузлах, сердце, печени, лёгких, кишечнике, плазме крови, надпочечниках.

Литий принимает участие в важных процессах:

  • участвует в углеводном и жировом обменах;
  • поддерживает иммунную систему;
  • предупреждает возникновение аллергии;
  • снижает нервную возбудимость.

Препараты лития широко используются в терапии психических расстройств.

Выделяется литий преимущественно почками.

По состоянию на конец 2007 — начало 2008 года, цены на металлический литий (чистота 99 %) составляли 63—66 долларов за 1 кг.

Источник

Поделиться с друзьями
Металл
Adblock
detector