Композитная арматура лира сапр

Расчёт композитной арматуры в ПК ЛИРА 10.6

Общие положения

Первые опыты применения композитной арматуры относятся к 70-м годам прошлого века. В силу различных причин в СССР такая композитная арматура не пользовалась большим спросом, хотя в западных странах используется достаточно активно. В настоящее время Российские строители все активнее перенимают опыт западных коллег, в том числе по использованию композитной арматуры в строительстве. Сейчас композитную арматуру начинают использовать все чаще, благодаря ее плюсам: композитная арматура отличается стойкостью к коррозии и агрессивным средам, что значительно увеличивает долговечность конструкций; обладает низкой теплопроводностью, что позволяет избежать появления мостиков холода; сравнительно невысокая стоимость и т.д.

К недостаткам можно отнести следующие:

Низкий модуль упругости.

Хрупкость и не пластичность.

Приказом Министерства строительства и жилищно-коммунального хозяйства Российской Федерации от 8 июля 2015 г. N 493/пр в СП 63.13330.2012 «Бетонные и железобетонные конструкции» были внесены изменения, касающееся расчёта и проектирования конструкций с применением композитной арматуры. Появилось приложение Л «Расчёт конструкций с композитной полимерной арматурой».

Согласно ГОСТ 31938-2012 «Арматура композитная полимерная для армирования бетонных конструкций. Общие технические условия», композитная арматура имеет следующую классификацию:

АКК – комбинированная композитная.

Как говорилось выше, все расчётные положения для арматуры композитной полимерной (АКП) изложены в СП 63.13330.2012, приложение Л. В ПК ЛИРА 10.6 были реализованы положения, полностью отвечающие указанному нормативному документу.

Мы не будем здесь подробно рассматривать все расчётные положения приложения Л, в ПК ЛИРА 10.6 они реализованы в полном соответствии с нормативным документом, здесь лишь отметим одно значительное:

Л.2.5 Расчетное значение сопротивления АКП сжатию следует принимать равным нулю.

Это говорит о том, что композитная арматура в расчётах будет подбираться только при растяжении, это положение реализовано в ПК ЛИРА, и расчётчик должен об этом знать.

Реализация в ПК ЛИРА

Рассмотрим теперь функционал задания АКП в ПК ЛИРА 10.6.

Параметры проверки/подбора железобетонных сечений с применением АКП задаются в параметрах конструирования.

1. Заходим в параметры конструирования.

2. Выбираем железобетонные элементы, например ж. б. пластина по СП 63.13330.2012.

3. Нажимаем левой кнопкой мыши на класс арматуры (рис. 1)

Рисунок 1. Выбор в параметрах конструирования композитной арматуры

4. Для выбора класса арматуры необходимо нажать на соответствующий список (рис. 2).

Рисунок 2. Выбор класса композитной арматуры

Для вывода характеристик выбранной арматуры следует нажать на соответствующую кнопку.


Рисунок 3. Характеристики композитной арматуры.

Редактирование базы данных материалов

Если характеристики арматуры отличаются от той, что содержится в базе данных ПК ЛИРА, можно внести в базу данных собственные материалы, сохранить новую базу и использовать в дальнейшем.

Для создания новой базы данных материалов необходимо зайти в редактор материалов и нажать на кнопку «Редактор базы данных». Далее в появившейся таблице выбираем таблицу композитной арматуры. Проще всего скопировать уже существующий сортамент и вносить изменения в нем, для этого необходимо нажать соответствующую кнопку и ввести название добавляемого нового сортамента (рис. 4).


Рисунок. 4. Создание пользовательского сортамента композитной арматуры.

Таким образом мы рассмотрели вопрос расчёта железобетонных сечений с применением композитной арматуры в ПК ЛИРА 10.6, что открывает для конструкторов новые возможности по проектированию и расчёту.

Читайте также:  Сертификат на строительную арматуры

Источник

Заметка эксперта №41. Расчёт композитной арматуры в ПК ЛИРА 10.6

Общие положения

Первые опыты применения композитной арматуры относятся к 70-м годам прошлого века. В силу различных причин в СССР такая композитная арматура не пользовалась большим спросом, хотя в западных странах используется достаточно активно. В настоящее время Российские строители все активнее перенимают опыт западных коллег, в том числе по использованию композитной арматуры в строительстве. Сейчас композитную арматуру начинают использовать все чаще, благодаря ее плюсам: композитная арматура отличается стойкостью к коррозии и агрессивным средам, что значительно увеличивает долговечность конструкций; обладает низкой теплопроводностью, что позволяет избежать появления мостиков холода; сравнительно невысокая стоимость и т.д.

К недостаткам можно отнести следующие:

  • Низкий модуль упругости.
  • Хрупкость и не пластичность.
  • Низкая пожаростойкость.

Приказом Министерства строительства и жилищно-коммунального хозяйства Российской Федерации от 8 июля 2015 г. N 493/пр в СП 63.13330.2012 «Бетонные и железобетонные конструкции» были внесены изменения, касающееся расчёта и проектирования конструкций с применением композитной арматуры. Появилось приложение Л «Расчёт конструкций с композитной полимерной арматурой».

Согласно ГОСТ 31938-2012 «Арматура композитная полимерная для армирования бетонных конструкций. Общие технические условия», композитная арматура имеет следующую классификацию:

  • АСК – стеклокомпоизтная;
  • АБК – базальтокомпозитная;
  • АУК – углекомпозитная;
  • ААК – арамидокомпозитная;
  • АКК – комбинированная композитная.

Источник

Чтение результатов подбора арматуры

Чтение результатов подбора продольной арматуры для стержней

Результаты подбора арматуры для стержней заносятся в три строки:

  • СТРОКА 1 — полная арматура в сечении;
  • СТРОКА 2 — арматура, подобранная по I группе предельных состояний;
  • СТРОКА 3 — арматура, обусловленная кручением (отмечена знаком ‘*’). * Поперечная арматура от кручения – площадь сечения замкнутого внешнего хомута.

Структура строки результатов:

ЭЛЕМЕНТ — номер элемента в расчетной схеме;
СЕЧЕНИЕ — номер армируемого сечения стержневого элемента;
C/Н симметричное и несимметричное армирование;
Знаком * отмечена арматура, обусловленная кручением.

ПРОДОЛЬНАЯ АРМАТУРА — площади подобранной продольной арматуры (см 2 ) и процент армирования.

AU1 — площадь угловой нижней продольной арматуры (в левом нижнем углу сечения — против осей Z1 и Y1);
AU2 — площадь угловой нижней продольной арматуры (в правом нижнем углу сечения — против оси Z1 и по направлению оси Y1);
AU3 — площадь угловой верхней продольной арматуры (в левом верхнем углу сечения — против оси Y1 и по направлению оси Z1);
AU4 — площадь угловой верхней продольной арматуры (в правом верхнем углу сечения — по направлению осей Z1 и Y1);

AS1 — площадь нижней продольной арматуры (нижняя грань против направления оси Z1);
AS2 — площадь верхней продольной арматуры (верхняя грань по направлению оси Z1);

AS3 — площадь боковой продольной арматуры (левая грань против направления оси Y1);
AS4 — площадь боковой продольной арматуры (правая грань по направлению оси Y1).

ПОПЕРЕЧНАЯ АРМАТУРА — площади поперечной арматуры.
ASW1 — вертикальная поперечная арматура (вдоль оси Z1);
ASW2 — горизонтальная поперечная арматура (вдоль оси Y1);

ШИРИНА РАСКРЫТИЯ ТРЕЩИН — ширина кратковременного и длительного раскрытия трещин (мм).

Рекомендации по подбору армирования стержней

Основное влияние на результат подбора армирования стержня оказывает привязка ц.т. арматуры к грани сечения. Данную величину следует назначать с учётом требований нормативных документов по величине защитного слоя см. СП 63.13330.2012 п.10.3.2, табл. 10.1. Для предварительного расчёта рекомендуется задать привязку ц.т. арматуры стержня 5 см. После получения результата в виде требуемой площади арматуры, следует определить, какое количество стержней выбранного диаметра может перекрыть требуемую площадь арматуры. После подбора нужного количества стержней, следует выполнить их расстановку в пределах габаритов сечения стержня. Если первоначально планировалось устанавливать стержни в один ряд, то следует проверить — можно ли их расставить одним рядом, но так, чтобы соблюдались требования по минимальному расстоянию между стержнями в конструкции — см. СП 63.13330.2012, п.10.3.5.

Читайте также:  Сколько арматуры надо на плитный фундамент 6х6

Если расстановку стержней с соблюдением всех требований выполнить не удаётся, то следует внести изменения в конструкцию:

  • изменить классы бетона/арматуры;
  • увеличить сечение элемента;

Как выбрать диаметр арматуры

Если расчёт выполняется только по I группе предельных состояний, то выбирать диаметр арматуры следует исходя из возможности расстановки арматуры в сечении. Если выполняется расчёт по II группе предельных состояний, то при расстановке стержней в сечении, следует применять стрежни диаметром, не превышающим диаметр, указанный при задании характеристик материалов для расчёта ж.б. конструкций.

Чтение результатов подбора продольной арматуры для пластин

Структура строки Результатов:

ЭЛЕМЕНТ — номер элемента в расчетной схеме;
ПРОДОЛЬНАЯ АРМАТУРА — площади подобранной продольной арматуры.

AS1 — площадь нижней (для балок-стенок посредине) арматуры по направлению X (см 2 /пм);
AS2 — площадь верхней арматуры по направлению X (см 2 /пм);
AS3 — площадь нижней (для балок-стенок посредине) арматуры по направлению Y (см 2 /пм);
AS4 — площадь верхней арматуры по направлению Y (см 2 /пм);

ПОПЕРЕЧНАЯ АРМАТУРА — площади поперечной арматуры:
ASW1 — поперечная арматура по направлению X (см 2 /пм);
ASW2 — поперечная арматура по направлению Y (см 2 /пм);

Рекомендации по подбору армирования пластин

Рекомендации аналогичны тем, что приведены выше, для стержней, с той лишь разницей, что при расчёте пластин по II группе предельных состояний при назначении материалов следует задавать шаг стержней, равный шагу фоновой арматуры, принимаемой в проекте. Программа подберёт нужный диаметр стержня, который, при выбранном шаге, позволит обеспечить требуемую площадь арматуры. Допускается принимать меньший диаметр арматуры и располагать его с меньшим шагом, чем было принято изначально. После выбора сочетания шаг/диаметр, следует откорректировать привязки ц.т. арматуры и выполнить повторный расчёт, по результатам которого удостовериться, что подобранная арматура обеспечивает выполнения требований прочности и трещиностойкости.

Чтение результатов подбора поперечной арматуры

Реализованный в ЛИРЕ САПР вариант расчета на поперечную силу предполагает следующее:

  • из каждого расчетного сечения стержня простраивается ряд наклонных сечений;
  • проекция наклонного сечения С изменяется в пределах от ho до 2ho;
  • перебором с изменением С на 10% вычисляются:
    Qb→Qsw=Q-Qb→qsw=Qsw/(С*φsw)→(Asw/sw)=qsw/Rsw;
  • за расчетное поперечное армирование принимается max из полученных Asw/sw [см 2 /1.м.п.] (Asw/sw – интенсивность поперечного армирования на 1 м.п.)

Для стержней чтобы перейти к конкретному диаметру арматуры следует задаться шагом sw, тогда Asw=(Asw/sw)*sw. Зная Asw и количество срезов хомута в поперечном сечении n, площадь одного стержня Asw,i=Asw/n[см 2 ].

Но также следует проверить достаточно ли при этом поперечного армирования на кручение, т.к. арматура на кручение должна быть обеспечена замкнутым хомутом, поэтому в строке 3 выводится площадь одного замкнутого хомута с различным шагом вдоль стержневого элемента. Т.е. нужно выбрать из строки 3 максимальное значение вертикальной (ASW1) и горизонтальной (ASW2). У одной грани элемента площадь крайнего поперечного стержня Asw,i должна быть больше, чем требуется из расчета на кручение.

К примеру, получили результат:

Т.е. Asw1/sw=8,8см 2 /1м.п.
Принимаем шаг sw=0,2м, тогда Asw=8,8*0,2=1,76см 2 .
При 4 срезах хомута (n=4) Asw,i=1,76/4=0,44см 2 →d8A240C c Asw,i=0,503см 2 .

Проверим достаточность поперечного армирования на кручение:
Арматура исходя из прочности на кручение: Asw*=3,24*0,2=0,648см 2 >Asw,i=0,503см 2
Т.к. Asw* — арматура у одной грани, то окончательно принимаем хомут d10A240C c Asw,i=0,785см 2 .

Для пластин следует помнить, что результаты выводятся на 1п.м. ширины элемента, а площадь поперечного армирования получена при шаге стержней 100см (Asw/sw). Т.е. при определении диаметра стержня следует задаться шагом стержней вдоль наклонного сечения и поперек его (sw и sw┴).

Читайте также:  Штрих код на металлопрокате

Так, если требуемое поперечное армирование 100(см 2 /1.м.п.)/1м. ширины, шаг стержней в направлении наклонного сечения 0,06м, а в перпендикулярном 0,1м, то площадь одного стержня Asw,i=(100*0,06)*0,1=0,6см 2 .

Источник

Расчёт композитной арматуры в ПК ЛИРА 10.6

Общие положения

Первые опыты применения композитной арматуры относятся к 70-м годам прошлого века. В силу различных причин в СССР такая композитная арматура не пользовалась большим спросом, хотя в западных странах используется достаточно активно. В настоящее время Российские строители все активнее перенимают опыт западных коллег, в том числе по использованию композитной арматуры в строительстве. Сейчас композитную арматуру начинают использовать все чаще, благодаря ее плюсам: композитная арматура отличается стойкостью к коррозии и агрессивным средам, что значительно увеличивает долговечность конструкций; обладает низкой теплопроводностью, что позволяет избежать появления мостиков холода; сравнительно невысокая стоимость и т.д.

К недостаткам композитной арматуры можно отнести следующие:

  • Низкий модуль упругости.
  • Хрупкость и не пластичность.
  • Низкая пожаростойкость.

Приказом Министерства строительства и жилищно-коммунального хозяйства Российской Федерации от 8 июля 2015 г. N 493/пр в СП 63.13330.2012 «Бетонные и железобетонные конструкции» были внесены изменения, касающееся расчёта и проектирования конструкций с применением композитной арматуры. Появилось приложение Л «Расчёт конструкций с композитной полимерной арматурой».

Согласно ГОСТ 31938-2012 «Арматура композитная полимерная для армирования бетонных конструкций. Общие технические условия», композитная арматура имеет следующую классификацию:

  • АСК – стеклокомпоизтная;
  • АБК – базальтокомпозитная;
  • АУК – углекомпозитная;
  • ААК – арамидокомпозитная;
  • АКК – комбинированная композитная.

Как говорилось выше, все расчётные положения для арматуры композитной полимерной (АКП) изложены в СП 63.13330.2012, приложение Л. В ПК ЛИРА 10.6 были реализованы положения, полностью отвечающие указанному нормативному документу.

Мы не будем здесь подробно рассматривать все расчётные положения приложения Л, в ПК ЛИРА 10.6 они реализованы в полном соответствии с нормативным документом, здесь лишь отметим одно значительное:

Л.2.5 Расчетное значение сопротивления АКП сжатию следует принимать равным нулю.

Это говорит о том, что композитная арматура в расчётах будет подбираться только при растяжении, это положение реализовано в ПК ЛИРА, и расчётчик должен об этом знать.

Данное положение, на наш взгляд, кажется весьма странным, т.к. в том же ГОСТ 31938-2012, в таблице 4 приводятся характеристики АКП, и предел прочности при сжатии для всех типов композитной арматуры принимается не менее 300 Мпа.

Реализация расчета композитной арматуры в ПК ЛИРА

Рассмотрим теперь функционал задания АКП в ПК ЛИРА 10.6.

Параметры проверки/подбора железобетонных сечений с применением АКП задаются в параметрах конструирования.

  1. Заходим в параметры конструирования.
  2. Выбираем железобетонные элементы, например ж. б. пластина по СП 63.13330.2012.
  3. Нажимаем левой кнопкой мыши на класс арматуры (рис. 1)

4. Для выбора класса арматуры необходимо нажать на соответствующий список (рис. 2).

Для вывода характеристик выбранной композитной арматуры следует нажать на соответствующую кнопку.

Редактирование базы данных материалов

Если характеристики композитной арматуры отличаются от той, что содержится в базе данных ПК ЛИРА, можно внести в базу данных собственные материалы, сохранить новую базу и использовать в дальнейшем.

Для создания новой базы данных материалов необходимо зайти в редактор материалов и нажать на кнопку «Редактор базы данных». Далее в появившейся таблице выбираем таблицу композитной арматуры. Проще всего скопировать уже существующий сортамент и вносить изменения в нем, для этого необходимо нажать соответствующую кнопку и ввести название добавляемого нового сортамента (рис. 4).

Таким образом мы рассмотрели вопрос расчёта железобетонных сечений с применением композитной арматуры в ПК ЛИРА 10.6, что открывает для конструкторов новые возможности по проектированию и расчёту.

Источник

Поделиться с друзьями
Металл