Коэффициент теплоотдачи поверхность металл

Содержание
  1. Расчет коэффициентов теплоотдачи
  2. Расчет коэффициента теплоотдачи плоской стенки
  3. Исходные данные:
  4. Коэффициент теплоотдачи поверхность — воздух
  5. Схемы теплообмена:
  6. Расчет в Excel:
  7. Замечание:
  8. Литература:
  9. P. S. (01.11.2020)
  10. Дополнение по естественной конвекции у вертикальной поверхности:
  11. Эмпирические уравнения для суммарного коэффициента теплоотдачи:
  12. Расчет коэффициента теплоотдачи на плоских и гофрированных поверхностях
  13. Что такое коэффициент теплоотдачи?
  14. Расчет коэффициента теплоотдачи в COMSOL Multiphysics®
  15. Пример 1. Теплообмен при вынужденном обтекании плоской горизонтальной пластины
  16. Моделирование сопряженного теплообмена
  17. Расчет коэффициента теплоотдачи по формулам для числа Нуссельта
  18. Расчет коэффициента теплоотдачи
  19. Пример 2. Течение у гофрированной поверхности горизонтальной пластины
  20. Заключение
  21. Дальнейшие шаги

Расчет коэффициентов теплоотдачи

Интенсивность теплоотдачи зависит от динамического вида течения, определяющего структуру пограничного слоя у поверхности теплообмена, который в свою очередь зависит от скорости потока. Увеличение скорости потока ведет к уменьшению пограничного слоя, повышает турбулентность и приводит к увеличению интенсивности теплоотдачи.

Теплоотдача так же зависит от характеристик теплоносителя. Высокая теплопроводность уменьшает термическое сопротивление пограничного слоя и увеличивает теплоотдачу.

Снижение вязкости жидкости уменьшает пограничный слой, что так же благоприятно влияет на теплообмен между поверхностью и потоком теплоносителя.

Уменьшение пограничного слоя происходит так же в случае повышения кинематической вязкости или увеличения плотности рабочей среды, что так же повышает теплоотдачу.

Так же интенсивность теплоотдачи зависит от теплоемкости жидкости. При повышении теплоемкости повышается и теплоотдача, поскольку жидкость с большей теплоемкостью способна переносить большее количество теплоты.

Дополнительными факторами, влияющими на теплоотдачу, являются форма поверхности теплоотдачи, химические реакции и фазовые переходы в теплоносителе.

Онлайн расчеты, выполняемые в данном разделе, включают в себя определение коэффициентов теплоотдачи для наиболее распространенных случаев: плоской поверхности, внутренней и наружной стенки трубы, а так же расчет коэффициента теплоотдачи наружной поверхности группы параллельных труб. Для расчета необходимо задать определяющие размеры поверхностей, их температуру, температуру теплоносителя, скорость потока а так же такие характеристики рабочей среды как динамическая вязкость, плотность, коэффициент теплопроводности и удельная теплоемкость.

Расчет коэффициента теплоотдачи плоской стенки

Вычислить коэффициент теплоотдачи плоской поверхности можно с помощью уравнения подобия:

Nul = 0,66×Rel 0,5 ×Pr 0,33 ; при ламинарном пограничном слое

Nul = 0,037×Rel 0,8 ×Pr 0,43 ; при турбулентном пограничном слое

Rel — число Рейнольдса, Pr — число Прандтля.

Исходные данные:

L — размер поверхности в направлении потока, миллиметрах;

w — скорость потока, метрах в секунду;

μ — динамическая вязкость теплоносителя, в паскаль×секунда;

ρ — плотность теплоносителя, в килограммах / метр 3 ;

λ — коэффициент теплопроводности теплоносителя, в ваттах / метр×°C×сек;

Cp — удельная теплоемкость теплоносителя, в джоулях / килограмм×°C.

КОЭФФИЦИЕНТ ТЕПЛООТДАЧИ ПЛОСКОЙ СТЕНКИ

Размер поверхности L, мм

Скорость потока, w, м/c

Динамическая вязкость, μ, Па*с

Плотность теплоносителя, ρ, кг/м 3

Теплопроводность, λ, Вт/(м* 0 C×сек)

Удельная теплоемкость, Сp, Дж/(кг* 0 C)

Источник

Коэффициент теплоотдачи поверхность — воздух

В статье рассмотрен расчет мощности теплового потока от горизонтальных и вертикальных плоских поверхностей тела, помещенного в «безразмерное» воздушное пространство при принудительной и естественной конвекции с учетом радиационной составляющей теплоотдачи.

Зная коэффициент теплоотдачи на поверхности (α), разделяющей твердое тело и окружающее это тело воздушное пространство, очень просто определить мощность теплового потока (Q) по известной разности температур (Δt).

Q=α*A*Δt, Вт – мощность теплового потока от или к поверхности тела.

  • α=αк+αр, Вт/(м 2 *К) – суммарный коэффициент теплоотдачи на границе воздух – поверхность тела
    • αк=?, Вт/(м 2 *К) – коэффициент конвективной теплоотдачи
    • αр=ε*5,67*10 -8 *((tп+273,15) 4 — (tв+273,15) 4 )/(tп-tв)), Вт/(м 2 *К) – коэффициент радиационной теплоотдачи (теплоотдачи излучением), ε – степень черноты поверхности
  • А, м 2 – площадь поверхности
  • Δt=|tп-tв|, К – разность температур поверхности и воздушной среды
    • tп, °C – температура поверхности
    • tв, °C – температура воздуха

Основная сложность расчета заключается в определении коэффициента конвективной теплоотдачи (αк)! Автоматизировать в первую очередь решение этой трудоемкой задачи поможет Excel.

Нестабильность процесса естественной конвекции у поверхностей различной формы и расположения в пространстве породила большое разнообразие эмпирических формул для вычисления коэффициента конвективной теплоотдачи (αк). Неизбежные погрешности экспериментальных данных привели к тому, что результаты вычислений для одних и тех же поверхностей и условий по формулам разных авторов отличаются друг от друга на 20% и более.

После тщательного детального ознакомления с материалами современных западных изданий по теплообмену (список литературы – в конце статьи) были выбраны формулы, рекомендованные к применению большинством авторов, для использования в представленной далее программе в Excel.

Схемы теплообмена:

На представленных ниже рисунках показаны 8 вариантов схем, для которых программа может выполнить вычисления.

Розовый цвет пластин свидетельствует о том, что они горячее окружающего воздуха. Голубой цвет – пластины холоднее воздуха.

На схемах 1а и 1б воздух принудительно движется (вентилятор, ветер) вдоль поверхности пластины независимо от её ориентации в пространстве. На всех остальных схемах окружающий воздух находится в спокойном состоянии (помещение, полный штиль), а положение пластин сориентировано в пространстве.

Читайте также:  Химия как наука металлы

Расчет в Excel:

Формулы алгоритма программы:

t=(tв+tп)/2

l=L – для схем 1а и 1б

l=(B*L)/(2*(B+L)) – для схем 2а, 2б, 3а, 3б, 4а, 4б

Для определения теплофизических параметров воздуха при определяющей температуре (t) в диапазоне -70°C … +1200°C использованы формулы из предыдущей статьи на сайте.

Re=w*l

Gr=g*β*|tп tв|*l 3 /ν 2

Ra=Gr*Pr

αк=Nu*λ/l

αр=ε*0,00000005670367*((tп+273,15) 4 — (tв+273,15) 4 )/(tп-tв)) – при tв *) αр= – при tв>tп

α=αк+αр

q=α*(tп-tв)

Q=q*B*L

*) Нагрев поверхностей Солнцем или иными источниками теплового излучения программой игнорируется.

Вычисление теплофизических параметров воздуха и числа Нуссельта, как видно из вышеприведенных формул, являются ключевыми и самыми трудоемкими при определении конвективного коэффициента теплоотдачи.

Тестирование программы проводилось на примерах из книг, представленных в конце статьи. Отклонения результатов в основном не выходили за пределы ±5%.

Замечание:

В отечественной теплотехнической литературе для решения рассмотренных задач широко используются формулы второй половины прошлого века М.А. Михеева и В.П. Исаченко, которые в современной западной литературе не упоминаются. Беглый сравнительный анализ результатов расчетов по формулам разных авторов дал противоречивые и неоднозначные ответы. Если при принудительной конвекции результаты фактически идентичны, то при естественной конвекции отличаются порой на 30% и более, но иногда почти совпадают…

Литература:

  1. John H. Lienhard IV, John H. Lienhard V, A Heat Transfer Textbook (Fifth Edition), 2019.
  2. Frank Kreith, Raj M. Manglik, Mark S. Bohn, Principles of heat transfer (Seventh Edition), 2011.
  3. Adrian Bejan, Convection Heat Transfer (Fourth Edition), 2013.
  4. Michel Favre-Marinet, Sedat Tardu, Convective Heat Transfer, 2009.
  5. Harlan H. Bengtson, Convection Heat Transfer Coefficient Estimation, 2010.
  6. Rajendra Karwa, Heat and Mass Transfer, 2017.
  7. Stuart W. Churchill, Humbert H. S. Chu, Correlating equations for laminar and turbulent free convection from a vertical plate, International Journal of Heat and Mass Transfer, Volume 18, Issue 11, November 1975.
  8. http://people.csail.mit.edu/jaffer/SimRoof/Convection/
  9. И. И. Кирвель, М. М. Бражников, Е. Н. Зацепин ЭНЕРГОСБЕРЕЖЕНИЕ В ПРОЦЕССАХ ТЕПЛООБМЕНА, 2007.

Прошу уважающих труд автора скачать файл с программой после подписки на анонсы статей!

P. S. (01.11.2020)

Дополнение по естественной конвекции у вертикальной поверхности:

Если построить графики по вышеприведенным формулам Черчилля и Чу для числа Нуссельта при естественной конвекции у вертикальной изотермической поверхности (схемы 2а и 2б), то можно увидеть, что при Ra=10 9 кривые не совпадают!

По этому поводу авторы формул Черчилль и Чу дают примерно следующее пояснение: «уравнение, основанное на исследованиях Черчилля и Усаги Nu=(0,825+0,387*Ra 1/6 /(1+(0,492/Pr) 9/16 ) 8/27 ) 2 дает хорошие результаты для средней теплопередачи при свободной конвекции у изотермической вертикальной пластины во всем диапазоне значений Ra и Pr от до , даже если оно не работает для обозначения дискретного перехода от ламинарного к турбулентному потоку». Линхарды в [1] отмечают, что рассматриваемое уравнение чуть менее точно для ламинарных условий при Ra 9 и рекомендуют в этом диапазоне использовать первое уравнение тех же авторов Nu=0,68+0,67*Ra ¼ /(1+(0,492/Pr) 9/16 ) 4/9 . Хотя, судя по графикам, в диапазоне Ra 7 для воздуха обе функции чрезвычайно близки друг к другу.

Еще один нюанс, который встретился только у Линхардов в [1]: «свойства флюида следует оценивать при t=(tв+tп)/2 за одним исключением, если флюид – газ, то коэффициент объемного расширения β следует определять при t=tв». Но сами авторы зависимостей Черчилль и Чу о таком условии ничего не пишут. По этому поводу в их статье [7], говорится, что «для больших температурных перепадов, когда физические свойства существенно различаются, Ид рекомендует оценивать физические свойства как средние значения температуры поверхности и объема, а Уайли дает более подробные теоретические указания для режима ламинарного пограничного слоя».

Максимальная относительная ошибка для Nu=(0,825+0,387*Ra 1/6 /(1+(0,492/Pr) 9/16 ) 8/27 ) 2 , если β=1/tв вместо β=2/( tв+tп), составляет в процентах:

ε=(((tв+tп)/(2*tв)) 1/3 -1)*100%, или

ε=((|(tп tв)|/(2*tв)+1) 1/3 -1)*100%

Как видно из графика при температуре среды — воздуха tв=20°C=293,15K и при перепаде температур поверхности и воздуха Δt=|tп tв| 90 °C расхождение результатов быстро нарастает.

Правы Линхарды или множество других авторов, рассчитывающих все свойства флюидов при одном значении определяющей температуры t=(tв+tп)/2? Однозначного ответа у меня нет.

(По материалам Обри Джаффера [8].)

Эмпирические уравнения для суммарного коэффициента теплоотдачи:

В инженерных расчетах для быстрого приближенного определения суммарного коэффициента теплоотдачи, учитывающего и конвекцию, и излучение на границе поверхность тела – среда, можно использовать более простые зависимости, приведенные в [9].

При расчете тепловых потерь через наружные поверхности тел, которые находятся в спокойном воздухе закрытых помещений, можно применить нижеприведенные формулы. Результаты вычислений по этим формулам достаточно близки к результатам более точных расчетов.

Читайте также:  Как пилить металл пилой по металлу

α=9,74+0,07*(tп-tв), Вт/(м2*°C) при tп On-line калькуляторы для расчетов коэффициентов конвективной теплоотдачи от плоских, цилиндрических и сферических поверхностей:

Инструменты представлены Группой исследований теплопередачи (HTRG). Группа была создана в 2014 году преподавателями Лаборатории теплотехники и жидкостей факультета машиностроения инженерной школы Сан-Карлоса (EESC) Университета Сан-Паулу (USP) для проведения передовых, качественных фундаментальных и прикладных исследований по вопросам теплопередачи для многофазных и однофазных систем.

Точность результатов вычислений не проверял.

Источник

Расчет коэффициента теплоотдачи на плоских и гофрированных поверхностях

Во многих инженерных задачах, связанных с теплопередачей, например, при проектировании теплообменных аппаратов и радиаторов охлаждения, важное значение имеет расчет коэффициента теплоотдачи. Коэффициент теплоотдачи, который чаще всего рассчитывается с помощью эмпирических формул, характеризует интенсивность теплообмена на поверхности твердого тела. В этой статье мы расскажем и покажем, как рассчитать коэффициент теплоотдачи на плоской поверхности с помощью среды численного моделирования COMSOL Multiphysics®.

Что такое коэффициент теплоотдачи?

Рассмотрим нагретую стенку или поверхность, находящуюся в контакте с потоком жидкости. Перенос теплоты в жидкости определяется преимущественно конвекцией. Аналогично, конвекцией определяется перенос теплоты через твердую стенку, омываемую с двух сторон двумя разными жидкостями, например, в теплообменных аппаратах. Интенсивность теплопередачи в обоих случаях пропорциональна разности температур, а коэффициент пропорциональности, собственно, и является коэффициентом теплоотдачи. Коэффициент теплоотдачи характеризует теплообмен между поверхностью твердого тела и жидкостью.

В математическом смысле h — это отношение плотности теплового потока на стенке к разности температур стенки и жидкости; таким образом,

где q^ <\prime \prime>— плотность теплового потока, T_w — температура стенки, а T_\infty — характерная температура жидкости.

В качестве характерной температуры жидкости могут выступать температура жидкости вдали от стенки или среднемассовая температура в трубе.

Если объект находится в неограниченно большом объеме воздуха, можно предположить, что температура воздуха вдали от поверхности объекта является постоянной и известной величиной. Такие задачи теплообмена называются внешними.

Рассмотрим пристеночную область (пусть плоскость стенки расположена по нормали к оси y, и y = 0 соответствует поверхности стенки). С учетом сделанного выше допущения очевидно, что при выполнении условия прилипания на стенке (то есть отсутствия проскальзывания) вблизи стенки образуется тонкая пленка почти неподвижной жидкости. Следовательно, перенос теплоты в этой пленке осуществляется исключительно за счет теплопроводности.

Математически этот процесс описывается уравнением [1]:

Здесь k — коэффициент теплопроводности жидкости, а производная от T рассчитывается в области жидкости.

Из уравнений (1) и (2) следует, что коэффициент теплоотдачи можно определить следующим образом:

Расчет коэффициента теплоотдачи в COMSOL Multiphysics®

На практике измерить градиент температуры на стенке довольно затруднительно. Кроме того, хотелось бы эффективно анализировать процессы теплообмена вблизи твердой поверхности без привлечения значительных вычислительных ресурсов. Поэтому для расчета коэффициента теплоотдачи, как правило, используются неаналитические методы.

Широко признанным методом расчета коэффициента теплоотдачи является использование уравнений подобия для безразмерного числа Нуссельта. Эти уравнения позволяют быстро рассчитать коэффициент теплоотдачи для разных условий теплообмена, в том числе при свободной и вынужденной конвекции в задачах внешнего обтекания и при течении в каналах. Однако этот подход можно использовать только для объектов правильной геометрической формы: для горизонтальных и вертикальных плоских поверхностей, цилиндров и сфер.

Если поверхность теплообмена в задаче имеет более сложную форму, коэффициент теплоотдачи можно рассчитать с помощью моделирования сопряженного теплообмена.

Рассмотрим эти два варианта решения задачи:

  1. Расчет коэффициента теплоотдачи на поверхностях простой геометрической формы (например, на плоской пластине):
    • Моделирование сопряженного теплообмена
    • Расчетные формулы; область течения не моделируется
  2. Вычисление коэффициента теплоотдачи на поверхностях сложной геометрической формы (например, на гофрированной пластине)

Отметим, что очень важно принимать во внимание режим течения жидкости, поскольку коэффициент теплоотдачи зависит от механизмов переноса теплоты в жидкости. В обоих случаях рассмотрим наиболее реалистичный вариант быстрого течения, например, в системе вентиляции или устройстве охлаждения электронной микросхемы. Таким образом, модель должна учитывать дополнительные механизмы переноса теплоты, обусловленные турбулентностью.

Пример 1. Теплообмен при вынужденном обтекании плоской горизонтальной пластины

Рассмотрим задачу об обтекании горизонтальной плоской пластины длиной 5 м, на которой задана постоянная плотность теплового потока 10 Вт/м 2 . Пластина обдувается воздухом со средней скоростью 0,5 м/с и температурой 283 K. На рисунке ниже представлена схема области течения и показаны профили скорости и температуры в пределах динамического ( \delta ) и температурного ( \delta ) пограничных слоев при ламинарном режиме обтекания.



Схематическое изображение ламинарного (сверху) и турбулентного (снизу) пограничных слоев на горизонтальной пластине.

Моделирование сопряженного теплообмена

В COMSOL Multiphysics поставленную задачу можно решить численно, если воспользоваться интерфейсом Conjugate Heat Transfer (Сопряженный теплообмен), который позволяет рассчитать поля течения и температуры в жидкости. Поля скорости и давления рассчитываются в области, занятой воздухом, а поле температуры ещё и в самой пластине.

На следующем рисунке показано распределение температуры в пределах расчетной области, включающей пластину и воздух. В области течения формируются температурный и динамический погранслои, которые занимают область над пластиной толщиной около 2 см.


Распределение температуры (график скалярного поля), изотерма на 11 °C (красная линия) и поле скорости (стрелки), показывающие температурный и динамический погранслои у поверхности пластины (масштабы осей не совпадают).

По результатам моделирования можно рассчитать плотность теплового потока, если обратиться к соответствующей встроенной переменной постобработки. Если разделить найденное значение на разность температур (T_w-T_\infty) , получим коэффициент теплоотдачи (уравнение 3). На графике ниже показано, как изменяется рассчитанное значение коэффициента теплоотдачи вдоль пластины.

Читайте также:  Самый драгоценный металл 7 букв

Расчет коэффициента теплоотдачи по формулам для числа Нуссельта

Уравнение для расчета числа Нуссельта при вынужденном обтекании плоской пластины можно найти в литературных источниках (например, в [1]).

Во втором варианте расчета мы решим ту же задачу, но без моделирования области течения; то есть мы воспользуемся формулами для расчета коэффициента теплоотдачи. В этом случае расчетная область включает в себя только твердое тело (пластину). Плотность теплового потока, передаваемая с поверхности нагретой пластины холодной жидкости, задается с помощью граничного условия Heat Flux (Тепловой поток). В настройках этого граничного условия предусмотрен вариант, позволяющий задать коэффициент теплоотдачи на границе с помощью встроенных формул для расчета числа Нуссельта, как показано ниже. Еще раз отметим, что эти формулы уже имеются в COMSOL Multiphysics.


Настройки граничного условия Heat Flux (Тепловой поток).

С помощью этого условия можно рассчитать поле температуры в пластине. Зная коэффициент теплоотдачи на поверхности пластины, заданный в граничном условии Heat Flux (Тепловой поток), можно рассчитать плотность теплового потока: q=h\cdot(T_\infty-T) .

Расчет коэффициента теплоотдачи

Рассчитать, как изменяется коэффициент теплоотдачи по длине пластины, можно с помощью любого из двух описанных выше методов. На рисунке ниже показано сравнение результатов расчета коэффициента теплоотдачи двумя методами.


Сравнение значений коэффициента теплоотдачи на плоской пластине, рассчитанных методом моделирования сопряженного теплообмена (синяя линия) и с помощью уравнений для числа Нуссельта (зеленая линия).

Как видно на графике, значения, полученные с помощью уравнений для числа Нуссельта, и значения, рассчитанные на основе численного моделирования сопряженного теплообмена, почти идентичны.

Интерес представляет интенсивность теплообмена на пластине, рассчитанная этими двумя методами:

  1. Формула для расчета числа Нуссельта: 50 Вт/м
  2. Сопряженный теплообмен: 49,884 Вт/м

В некоторых задачах эмпирические формулы для числа Нуссельта позволяют рассчитать плотность теплового потока с достаточно высокой точностью. Теперь рассмотрим ситуацию, когда теплообмен происходит на поверхностии сложной формы, для которой нет формул расчета числа Нуссельта, и решить задачу можно только численно.

Пример 2. Течение у гофрированной поверхности горизонтальной пластины

Рассмотрим задачу с теми же исходными условиями, что и в первом случае, но только теперь верхняя поверхность пластины пусть будет гофрированной. На рисунке ниже представлена схема, иллюстрирующая постановку задачи. В этой модели одна из секций верхней поверхности пластины гофрирована. Остальные части пластины плоские.

Схема течения на горизонтальной пластине.

При такой форме поверхности стенки в пристеночной области появляются зоны рециркуляции, в результате чего интенсивность теплообмена повышается. На рисунке ниже представлено распределение температуры и линии тока.


Распределение температуры в градусах Цельсия (поверхность) и поле скорости (линии тока).

На графике слева показано изменение коэффициента теплоотдачи вдоль гофрированной пластины. В задачах со сложной формой поверхности теплообмена, как например при обтекании гофрированной пластины, коэффициент теплоотдачи зависит от нескольких факторов: поля температуры, поля скорости и геометрических параметров поверхности теплообмена (например, высоты гофры). Таким образом, коэффициент теплоотдачи оказывается выше, чем в случае плоской пластины (см. рисунок справа).

Изменение коэффициента теплоотдачи вдоль гофрированной пластины (слева) и вдоль плоской пластины (справа).

Для моделирования сопряженного теплообмена в моделях со сложной формой поверхностей могут потребоваться значительные вычислительные ресурсы, поэтому иногда предпочтение отдается альтернативным методам решения задачи. Хорошим вариантом решения является замена поверхности сложной формы на простую и подстановка значений коэффициента теплоотдачи, полученных на поверхности сложной формы с учетом геометрических параметров, поля скорости и разности температур. Следует отметить, что, даже если поверхность не является изотермической или если плотность теплового потока не постоянна, значение коэффициента теплоотдачи все равно представляет интерес для некоторых конфигураций, не слишком сильно отличающихся от исходной модели.

Для проверки рассмотрим простой вариант задачи о расчете коэффициента теплоотдачи на омываемой потоком гофрированной поверхности пластины. На основе полученных данных можно определить средний коэффициент теплоотдачи, который затем легко использовать в модели с плоской поверхностью пластины. Корректность такого приближенного подхода можно проверить, если проанализировать полный тепловой поток с поверхности или коэффициент теплоотдачи на основе моделирования сопряженного теплообмена.

Заключение

В этой статье мы рассказали о двух методах расчета коэффициента теплоотдачи. При моделировании сопряженного теплообмена можно использовать встроенные переменные COMSOL Multiphysics, содержащие значения плотности теплового потока. Применение граничного условия Heat Flux (Тепловой поток) и формул для расчета числа Нуссельта позволяет решать задачи о теплообмене на поверхностях простой формы. Также мы кратко обсудили, как использовать упрощенную геометрическую модель для получения данных о коэффициенте теплоотдачи на поверхностях сложной формы.

Дальнейшие шаги

Нажмите на кнопку ниже, чтобы получить дополнительную информацию о специализированных функциях моделирования теплообмена в среде численного моделирования COMSOL®.

Опробуйте рассмотренные методы с помощью учебных моделей:

Источник

Поделиться с друзьями
Металл
Adblock
detector