Карбиды металлов спеченные с металлом

Карбиды металлов спеченные с металлом

Бурение скважин является широко популярной услугой, которая помогает не быть зависимым от централизованного водоснабжения, получить собственный источник чистой воды.

Как правило, для заведений общественного питания необходимо специальное оборудование. Без холодильного стола на кухни ни как не обойтись. Это оборудование объединяет в.

Незастекленный балкон является своеобразным бельмом на глазу современных апартаментов, заметно проигрывающим в своей эстетике тем балконным конструкциям, на которых уже.

Как только на рынке появились первые лампочки, они имели цоколь е27, они и сегодня пользуется очень большим спросом. Это стандартизация мирового масштаба, практически в.

Строительная сфера очень развита, сегодня можно увидеть объекты только на подготовленных сухих площадках, но и на воде. Обратите внимание на современный порт, большая.

Компания ООО «ВЫБОР СВЕТА» поставляет светодиодные светильники из Санкт-Петербурга. Основной целью компании является мелкооптовая и оптовая торговля светодиодной.

Для обработки земли, ухода за разными растениями аграрии часто используют полногабаритную технику (трактора), а также средства малой. Используется эта техника также в.

Антифриз – специальная охлаждающая смесь. В автомобиле ее заливают в систему охлаждения мотора. От двигателя лишнюю тепловую энергию жидкость отводит при циркуляции.

Источник

Твёрдые сплавы

Твёрдые сплавы — твёрдые и износостойкие металлические материалы, способные сохранять эти свойства при 900—1150 °C. В основном изготовляются из высокотвердых и тугоплавких материалов на основе карбидов вольфрама, титана, тантала, хрома, связанные кобальтовой металлической связкой, при различном содержании кобальта или никеля.

Содержание

Типы твёрдых сплавов

Различают спечённые и литые твёрдые сплавы. Главной особенностью спеченных твердых сплавов является то, что изделия из них получают методами порошковой металлургии и они поддаются только обработке шлифованием или физико-химическим методам обработки (лазер, ультразвук, травление в кислотах и др), а литые твердые сплавы предназначены для наплавки на оснащаемый инструмент и проходят не только механическую, но часто и термическую обработку (закалка, отжиг, старение и др). Порошковые твердые сплавы закрепляются на оснащаемом инструменте методами пайки или механическим закреплением.
Твердые сплавы различают по металлам карбидов, в них присутствующих: вольфрамовые — ВК2, ВК3,ВК3М, ВК4В, ВК6М, ВК6, ВК6В, ВК8, ВК8В, ВК10, ВК15, ВК20, ВК25; титано-вольфрамовые — Т30К4, Т15К6, Т14К8, Т5К10, Т5К12В; титано-тантало-вольфрамовые — ТТ7К12, ТТ10К8Б.Безвольфрамовые ТНМ20, ТНМ25, ТНМ30

По химическому составу твердые сплавы классифицируют:

  • вольфрамокобальтовые твердые сплавы (ВК);
  • титановольфрамокобальтовые твердые сплавы (ТК);
  • титанотанталовольфрамокобальтовые твердые сплавы (ТТК).

Твердые сплавы по назначению делятся (классификация ИСО) на:

  • Р — для стальных отливок и материалов, при обработке которых образуется сливная стружка;
  • М — для обработки труднообрабатываемых материалов (обычно нержавеющая сталь);
  • К — для обработки чугуна;
  • N — для обработки алюминия, а также других цветных металлов и их сплавов;
  • S — для обработки жаропрочных сплавов и сплавов на основе титана;
  • H — для закаленной стали.

Из-за дефицита вольфрама разработана группа безвольфрамовых твердых сплавов, называемых керметами. Эти сплавы содержат в своем составе карбиды титана (TiC), карбонитриды титана (TiCN), связанные никельмолибденовой основой. Технология их изготовления аналогична вольфрамосодержащим твердым сплавам.

Эти сплавы по сравнению с вольфрамовыми твердыми сплавами имеют меньшую прочность на изгиб, ударную вязкость, чувствительны к перепаду температур из-за низкой теплопроводности, но имеют преимущества — повышенную теплостойкость (1000 °C) и низкую схватываемость с обрабатываемыми материалами, благодаря чему не склонны к наростообразованию при резании. Поэтому их рекомендуют использовать для чистового и получистового точения, фрезерования. По назначению относятся к группе Р классификации ИСО.

Свойства твёрдых сплавов

Пластинки из твердого сплава имеют HRС 86-92 обладают высокой износостойкостью и красностойкостью (800—1000 °C), что позволяет вести обработку со скоростями резания до 800 м/мин.

Спечённые твёрдые сплавы

Твердые сплавы изготавливают путем спекания смеси порошков карбидов и кобальта. Порошки предварительно изготавливают методом химического восстановления (1-10 мкм), смешивают в соответствующем соотношении и прессуют под давлением 200—300 кгс/см², а затем спекают в формах, соответствующих размерам готовых пластин, при температуре 1400—1500 °C, в защитной атмосфере. Термической обработке твердые сплавы не подвергаются, так как сразу же после изготовления обладают требуемым комплексом основных свойств.

Композиционные материалы, состоящие из металлоподобного соединения, цементированного металлом или сплавом. Их основой чаще всего являются карбиды вольфрама или титана, сложные карбиды вольфрама и титана (часто также и тантала), карбонитрид титана, реже — другие карбиды, бориды и т. п. В качестве матрицы для удержания зерен твердого материала в изделии применяют так называемую «связку» — металл или сплав. Обычно в качестве «связки» используют кобальт (кобальт является нейтральным элементом по отношению к углероду, он не образует карбиды и не разрушает карбиды других элементов), реже — никель, его сплав с молибденом (никель-молибденовая связка).

Читайте также:  Концентрированная азотная кислота с металлами при нагревании

Получение твердых сплавов методом порошковой металлургии

  1. Получение порошков карбидов и кобальта методом восстановления из оксидов.
  2. Измельчение порошков карбидов и кобальта (производится на шаровых мельницах в течение 2-3 суток) до 1-2 микрон.
  3. Просеивание и повторное измельчение при необходимости.
  4. Приготовление смеси (порошки смешивают в количествах, соответствующих химическому составу изготавливаемого сплава).
  5. Холодное прессование (в смесь добавляют органический клей для временного сохранения формы).
  6. Спекание под нагрузкой (горячее прессование) при 1400 °C (при 800—850 °C клей сгорает без остатка). При 1400 °C кобальт плавится и смачивает порошки карбидов, при последующем охлаждении кобальт кристаллизуется, соединяя между собой частицы карбидов.

Номенклатура спеченных твердых сплавов

Твердые сплавы условно можно разделить на три основные группы:

  • вольфрамосодержащие твердые сплавы
  • титановольфрамосодержащие твердые сплавы
  • титанотанталовольфрамовые твердые сплавы

Каждая из вышеперечисленных групп твердых сплавов подразделяется в свою очередь на марки, разли­чающиеся между собой по химическому составу, физико-механическим и эксплуатационным свойствам.

Некоторые марки сплава, имея одинаковый химический состав, отличаются размером зерен карбидных составляющих, что определяет различие их физико-механических и эксплуатационных свойств, а отсюда и областей применения.

Свойства марок твердых сплавов рассчитаны таким образом, чтобы выпускаемый ассортимент мог в максимальной степени удовлетворить потребности современного производства. При выборе марки сплава следует учитывать: область применения сплава, характер требовании, предъявляемых к точности обрабаты­ваемых поверхностей, состояние оборудования и его кинематические и динамические данные.

Обозначения марок сплавов построено по следующему принципу:

1 группа — сплавы содержащие карбид вольфрама и кобальт. Обозначаются буквами ВК, после которых цифрами указывается процентное содержание в сплаве кобальта. К этой группе относятся следующие марки:

ВКЗ, ВКЗМ, ВК6, ВК6М, ВК60М, ВК6КС, ВК6В, ВК8, ВК8ВК, ВК8В, ВК10КС, ВК15, ВК20, ВК20КС, ВК10ХОМ, ВК4В.

2 группа — титановольфрамовые сплавы, имеющие в своем составе карбид титана, карбид вольфрама и кобальт. Обозначается буквами ТК, при этом цифра, стоящая после букв Т обозначает % содержание карбидов титана, а после буквы К — содержание кобальта. К этой группе относят­ся следующие марки: Т5К10, Т14К8, Т15К6, ТЗ0К4.

3 группа — титанотанталовольфрамовые сплавы, имеющие в своем составе карбид титана, тантала и вольфрама, а также кобальт и обозначаются буквами ТТК, при этом цифра, стоящая после ТТ % содержание карбидов титана и тантала, а после буквы К — содержание кобальта. К этой группе относятся следующие марки: ТТ7К12, ТТ20К9.

4 группа — сплавы с износостойкими покрытиями. Имеют буквенное обозначение ВП. К этой группе относятся следующие марки: ВП3115 (основа ВК6), ВП3325 (основа ВК8), ВП1255 (основа ТТ7К12).

Твердые сплавы применяемые для обработки металлов резанием: ВК6, ВКЗМ, ВК6М, ВК60М, ВК8, ВК10ХОМ, ТЗОК4, Т15К6, Т14К8, Т5К10, ТТ7К12, ТТ20К9.

Твердые сплавы применяемые для бесстружковой обработки металлов и древесины, быстроизнашивающихся деталей машин, приборов и приспособлений: ВКЗ, ВКЗМ, ВК6, ВК6М, ВК8, ВК15, ВК20, ВК10КС. ВК20КС.

Твердые сплавы применяемые для оснащения горного инструмента: ВК6В, ВК4В, ВК8ВК, ВК8, ВК10КС, ВК8В,ВК11ВК,ВК15.

В России и бывшем СССР для обработки металлов резанием применяются следующие спеченные твердые сплавы [1] :

Марка
сплава
WC % TiC % TaC % Co % Прочность на изгиб (σ),
МПа
Твёрдость,
HRA
Плотность (ρ),
г/см3
Теплопроводность (λ),
Вт/(м·°С)
Модуль Юнга (Е),
ГПа
ВК2 98 2 1200 91,5 15,1 51 645
ВК3 97 3 1200 89,5 15,3 50,2 643
ВК3-М 97 3 1550 91 15,3 50,2 638
ВК4 96 4 1500 89,5 14,9-15,2 50,3 637,5
ВК4-В 96 4 1550 88 15,2 50,7 628
ВК6 94 6 1550 88,5 15 62,8 633
ВК6-М 94 6 1450 90 15,1 67 632
ВК6-ОМ 92 2 6 1300 90,5 15 69 632
ВК8 92 8 1700 87,5 14,8 50,2 598
ВК8-В 92 8 1750 89 14,8 50,4 598,5
ВК10 90 10 1800 87 14,6 67 574
ВК10-ОМ 90 10 1500 88,5 14,6 70 574
ВК15 85 15 1900 86 14,1 74 559
ВК20 80 20 2000 84,5 13,8 81 546
ВК25 75 25 2150 83 13,1 83 540
ВК30 70 30 2400 81,5 12,7 85 533
Т5К10 85 6 9 1450 88,5 13,1 20,9 549
Т5К12 83 5 12 1700 87 13,5 21 549,3
Т14К8 78 14 8 1300 89,5 11,6 16,7 520
Т15К6 79 15 6 1200 90 11,5 12,6 522
Т30К4 66 30 4 1000 92 9,8 12,57 422
ТТ7К12 81 4 3 12 1700 87 13,3
ТТ8К6 84 8 2 6 1350 90,5 13,3
ТТ10К8-Б 82 3 7 8 1650 89 13,8
ТТ20К9 67 9,4 14,1 9,5 1500 91 12,5
ТН-20 79 (Ni15%) (Mo6%) 1000 89,5 5,8
ТН-30 69 (Ni23%) (Mo29%) 1100 88,5 6
ТН-50 61 (Ni29%) (Mo10%) 1150 87 6,2
Читайте также:  Пк1с 3в содержание драгоценных металлов

Иностранные производители твердого сплава, как правило, используют каждый свои марки сплавов и обозначения. При этом состав сплавов обычно держится в секрете.

Разработки

В этом разделе не хватает ссылок на источники информации.

В настоящее время в отечественной твердосплавной промышленности проводятся глубокие исследования, связанные с возможностью повышения эксплуатационных свойств твердых сплавов и расширением сферы применения. В первую очередь эти исследования касаются химического и гранулометрического состава RTP(ready-to-press) смесей. Одним из удачных примеров за последнее время можно привести сплавы группы ТСН (ТУ 1966—001-00196121-2006), разработанных специально для рабочих узлов трения в агрессивных кислотных средах. Данная группа является логическим продолжением в цепочке сплавов ВН на никелевой связке, разработанных Всероссийским Научно-Исследовательским Институтом Твердых Сплавов. Опытным путём было замечено, что с уменьшением размера зерен карбидной фазы в твердом сплаве, качественно повышаются такие характеристики, как твердость и прочность. Технологии плазменного восстановления и регулирования гранулометрического состава в данный момент позволяют производить твердые сплавы размеры зерен (WC) в которых могут быть менее 1 микрометра. Сплавы ТСН группы в настоящий момент находят широкое применение в производстве узлов химических и нефтегазовых насосов отечественного производства.

Литые твёрдые сплавы

Литые твёрдые сплавы получают методом плавки и литья.

Применение

Твердые сплавы в настоящее время являются распространенным инструментальным материалом, широко применяемым в инструментальной промышленности. За счет наличия в структуре тугоплавких карбидов твердосплавный инструмент обладает высокой твердостью HRA 80-92 (HRC 73-76), теплостойкостью (800—1000 °C), поэтому ими можно работать со скоростями, в несколько раз превышающими скорости резания для быстрорежущих сталей. Однако, в отличие от быстрорежущих сталей, твердые сплавы имеют пониженную прочность (σи = 1000—1500 МПа), не обладают ударной вязкостью. Твердые сплавы нетехнологичны: из-за большой твердости из них невозможно изготовить цельный фасонный инструмент, к тому же они ограниченно шлифуются — только алмазным инструментом, поэтому твердые сплавы применяют в виде пластин, которые либо механически закрепляются на державках инструмента, либо припаиваются к ним.

Твердые сплавы ввиду своей высокой твердости применяются в следующих областях:

  • Обработка резанием конструкционных материалов: резцы, фрезы, сверла, протяжки и прочий инструмент.
  • Оснащение измерительного инструмента: оснащение точных поверхностей микрометрического оборудования и опор весов.
  • Клеймение: оснащение рабочей части клейм.
  • Волочение: оснащение рабочей части волок.
  • Штамповка: оснащение штампов и матриц(вырубных, выдавливания и проч.).
  • Прокатка: твердосплавные валки (выполняются в виде колец из твердого сплава, одеваемых на металлическое основание)
  • Горнодобывающее оборудование: напайка спеченных и наплавка литых твердых сплавов.
  • Производство износостойких подшипников: шарики, ролики, обоймы и напыление на сталь.
  • Рудообрабатывающее оборудование: оснащение рабочих поверхностей.
  • Газотермическое напыление износостойких покрытий

Источник

Карбиды и их применение в промышленных целях

В статье рассматриваются карбиды различных металлов. Приведена классификация карбидов, описан их химический состав, марки, свойства и области применения.

Карбиды (от лат. carbo – уголь) – химические вещества, образуемые путем соединения с углеродом ряда металлов или таких неметаллических элементов таблицы Менделеева, как бор (B) и кремний (Si). Важнейшими физико-химическими свойствами карбидов являются твердость, способность противостоять механическим деформациям и тугоплавкость. Так, например, карбид вольфрама (WC), карбид тантала (TaC), карбид титана (TiC), карбид молибдена (MoC), карбид циркония (ZrC), а также карбид бора (B4C) и карбид кремния (SiC) не подвержены разложению даже при белом калении и нейтральны в химическом отношении, имеют степень твердости, близкую к твердости алмазов.

Рисунок 1. Фрезы из карбида вольфрама

Карбиды – вещества нелетучие и не растворяющиеся в самых агрессивных растворителях, включая “царскую водку” (смесь серной и соляной кислот). Их получают как непосредственно из чистых элементов, так и с применением метода восстановления оксидов углеродом. Промышленные партии карбидов выпускаются в виде порошков (спеченные карбиды) и специальных отливок (литые карбиды).

Классификация по группам

Согласно современной классификации карбиды, исходя из особенностей межатомной связи в молекулярной решетке, подразделяют на 3 группы, существенно различающиеся по набору функциональных характеристик.

В состав 1-й группы входят так называемые карбиды солеобразного типа с ионной связью. Их основой служат щелочные и щелочноземельные металлы, алюминий, редкоземельные элементы, а также актиниды – торий (Th), уран (U), плутоний (Pu) и другие. Многие из таких карбидов вступают с Н2О и кислотами в бурную реакцию и начинают разлагаться с обильным выделением газообразной фракции в виде метана (метаниды) или ацетилена (ацетилениды) и осаждением металлических гидроксидов. Карбиды данной группы используют для управления химическими реакциями как раскислители, восстановители, катализаторы и т.д. Наиболее востребованными метанидами являются карбиды магния (MgС2, Mg2C), алюминия (Al4C3) и бериллия (Be2C). Среди ацителенидов самым известным считается карбид кальция CaC2, широко используемый в газосварочных технологиях.

Ко 2-й группе причисляют ряд карбидов, именуемых металлоподобными. Их образуют в связке с углеродом переходные металлы IV–VII гр. Периодической таблицы Д.И. Менделева, а также кобальт, железо и никель. Карбиды металлоподобной группы, помимо твердости и тугоплавкости, имеют высокие показатели электропроводности и устойчивости к воздействию химически активных реагентов. Вот почему, в частности, карбиды железа (Fe3C), хрома (Cr3C2), молибдена (MoC) востребованы для цементации чугунных и стальных поверхностей, а карбиды вольфрама (WC), титана (TiC), тантала (TaC), ванадия (VC) – для производства твердых сплавов, для изготовления полупроводниковых диодов, различных жаростойких покрытий, рабочих кромок металлорежущего инструмента и породоразрушающего оборудования.

Читайте также:  Положительный ион этого металла преобладает во внеклеточной среде

3-ю группу составляют так называемые ковалентные карбиды кремния (SiC) и бора (B4C, B12C3), отличающиеся высочайшей твердостью и используемые для выпуска сверхтвердых сплавов, не уступающих по твердости корундам. Из них также производят абразивы для шлифовки и полировки поверхностей металлических изделий, огнеупоры и нагревательные элементы для высокотемпературных производственных процессов.

Карбиды тугоплавких металлов в производстве твердосплавных материалов

И все же самой обширной сферой применения является использование карбидов тугоплавких металлов для изготовления металлокерамических сплавов.

К категории твердых сплавов относят ряд износостойких металломатериалов на основе карбидов WC, TiC, VC, TaC, NbC, CrC и других металлов, имеющих Т° плавления от 860 до 1320°C, прочность связи которых в молекулярной структуре обеспечивают включения более мягких кобальта, никеля, железа с гораздо меньшей температурой плавления. Сплав становится менее хрупким и более упругим и пластичным, чем выше в нем процентное содержание связующего включения.

Для регламентации химического состава и эксплуатационных параметров твердых сплавов служат, в частности, ТУ 48-19-60-78, ТУ 48-19-154-92 и прочие нормативные документы.

По технологическому критерию твердые сплавы подразделяют на спеченные (металлокерамику) и литые (наплавляемые).

Изготовление спеченных твердых сплавов осуществляется методом порошковой металлургии. Техпроцесс включает в себя три последовательных этапа.

  1. Сначала в определенных соотношениях тщательно смешиваются дисперсные порошки тугоплавких металлов и металлов-связок (кобальтовый порошок, никелевый порошок и др.), а по мере необходимости – также порошков легирующих добавок.
  2. Затем готовую смесь подвергают прессованию под высоким давлением (1250-4550 кгс/см 2 и выше).
  3. На заключительном этапе производится спекание получаемого полуфабриката в специальной электропечи в температурном режиме, близком к Т плавления металлического связующего, до тех пор, пока не будет сформирован сплав, имеющий показатель твердости не ниже HRA = 86 и термостойкости до 1320°C.

Твердые сплавы практически не поддаются традиционным способам механической обработки (резание, давление, строгание, шлифовка и др.). С этой целью применяют такие современные методы, как лазерное/ультразвуковое шлифование либо кислотное травление.

Производство литых твердых сплавов базируется на таких технологических методах, как плавка и литье. Их применяют для наплавления защитного покрытия на быстроизнашиваемые поверхности и, сообразно химическому составу, подразделяют на 3 типа.

К первому типу относят релит – композицию вольфрамовых карбидов (WC и W2C), характеризуемую особенно высокими значениями показателей твердости и стойкости к износу. Т° плавления релита составляет 3520°C, что также является ценным критерием.

К группе релитов относятся:

  • литые карбиды вольфрама зерновые марок ЛКВ-«З» (ТУ У24.6-33876998-001-2006);
  • карбиды вольфрама сферические марок КВС (ТУ У24.1-19482355-001:2010;
  • ленточные релиты марок ЛЗ, ЛС, ЛСЗ (ТУ У28.7-19482355-002:2014).

Ко второму типу причисляют стеллиты – литые сплавы, являющие собой карбидную композицию W-Co-Cr. Им присуща более низкая, чем у релита, Т° плавления (близкая к Т° плавления сталей) на фоне, стойкости к износу и коррозии – качеств, обусловленных высокой твердостью. Изготавливаются в виде прутков. В России выпускаются стеллиты марок ПР-В3К и ПР-В3К-Р (ГОСТ 21449-75).

Третий тип литых твердосплавных материалов представлен сормайтами – соединениями композиции Fe-Cr-Mn-Ni, имеющие более низкую твердость и Т° плавления в сравнении со стеллитами. Отечественная промышленность производит прутки сормайта марки Пр-С (ГОСТ 21449-75). Сормайт бывает 2-х типов: сормайт №1 и сормайт №2, характеризующийся способностью подвергаться термообработке, а также более высокими характеристиками прочности и вязкости по сравнению с сормайтом №1. Торцевые оконечности прутков сормайта №1 окрашивают в зеленый цвет, а сормайта №2 – в красный.

Применение твердых сплавов в промышленных целях

В настоящее время трудно представить себе промышленную отрасль, в которой не использовались бы твердосплавные материалы на основе карбидов тугоплавких металлов и связующих металлокомпонентов.

Карбидо-содержащие сплавы необходимы, в частности, для:

  • производства металлорежущего и породоразрушающего инструмента в металлообрабатывающей и горнодобывающей отраслях;
  • изготовления штамповочного оборудования;
  • изготовления хирургических инструментов;
  • обустройства точных поверхностей в различном измерительном инструментарии;
  • маркирования рабочей поверхности клейм;
  • производства рабочих элементов подшипников качения;
  • других целей, когда использование твердосплавных материалов является целесообразным либо вовсе не имеет альтернатив.

Промышленная значимость карбидов в развитии технического прогресса побуждает исследователей и инженеров-практиков к созданию все новых продуктов на их основе. Так, сегодня особенно пристальное внимание уделяется разработке новейших типов карбидо-содержащих твердосплавных материалов с широким спектром полезных свойств для авиакосмической, судостроительной, радиоэлектронной отраслей и ядерной энергетики.

телефоны:
8 (800) 200-52-75
(495) 366-00-24
(495) 504-95-54
(495) 642-41-95

Источник

Поделиться с друзьями
Металл
Adblock
detector