Какие металлы можно получить алюмотермией

4. 4. 032 Физическая химия и алюминотермия Бекетов

4.4.032 Физическая химия и алюминотермия Бекетова

Химик, лектор, популяризатор, общественный деятель; профессор химии Харьковского университета и Высших женских курсов; ординарный академик Петербургской АН, член Парижского химического общества; основатель и глава научной физико-химической школы; председатель Русского физико-химического общества; инициатор и член ряда научных и просветительных обществ; заведующий химической лабораторией Петербургской АН, основатель нескольких термохимических лабораторий; лауреат Ломоносовской премии Петербургской АН; тайный советник — Николай Николаевич Бекетов (1827—1911) является одним из основоположников физической химии и химической динамики, создателем алюминотермии.

На Западе основоположником физической химии в ее современном виде считается немецкий ученый В. Оствальд, возглавивший первую кафедру физической химии Лейпцигского университета в 1888 г, а родоначальником алюминотермии — немецкий химик Г. Гольдшмидт, получивший свои первые результаты в 1894—1898 гг.

Правда, Н.Н. Бекетов занимался этим несколько ранее. В 1865 г. русский ученый защитил докторскую диссертацию «Исследования над явлениями вытеснения одних элементов другими», представляющую собой обширное физико-химическое экспериментальное исследование, и тогда же начал читать первый курс лекций по современной физической химии в Харьковском университете. (До этого в течение 5 лет Бекетов вел «Специальный курс органической химии и отношение физических и химических явлений между собой»). Кстати, тогда В. Оствальду было всего 12 лет.

Алюминотермию Бекетов открыл и вовсе в 1859 г., за два года до рождения Г. Гольдшмидта, а когда Гансу исполнилось 4 годика, русский химик уже разработал методы «химического» производства алюминия. Фабрики Германии и Франции, внедрившие этот метод, к 1890-м гг. давали четверть мирового производства алюминия. Гольдшмидт же осваивал т.н. внепечной процесс — одно из направлений алюминотермии.

Старая история Старого света! Научные приоритеты на Западе дело тонкое. Займемся делом.

Первым физической химией как наукой занялся М.В. Ломоносов. Он даже читал курс — «Введение в истинную физическую химию» в 1752—1754 гг. Затем сто лет наука развивалась своим естественным путем, пока Бекетов вновь не втиснул ее в русло университетской программы.

Эта научная и учебная новация была как нельзя более кстати. Во-первых, потому что и сам Бекетов на примере своих теоретических выкладок и процесса алюминотермии прекрасно продемонстрировал принципы физической химии, как самостоятельной науки, имеющей практическое применение. И, во-вторых, открытый Д.И. Менделеевым в 1869 г. периодический закон химических элементов и ряд работ европейских ученых обрели в этой науке свое надежное основание.

Историки науки, отмечавшие неординарность общего Бекетовского подхода к химии, любят говорить об ученом как о химике-философе.

В то время, как европейские химики занимались исключительно открыванием новых тел и новых соединений, Бекетов, не соблазняясь жаждой открытия новых фактов, «медленно шел по трудному пути теоретической химии и стремился к решению вопроса о том, где источник, где причина того, что в химии определяется термином “химическое сродство”» (http://dic.academic.ru/).

На этот путь химик вступил во время 15-месячной командировки в научные учреждения Европы. Начал Бекетов с того, что в Парижской Сорбонне у академика Ж.Б. Дюма стал изучать зависимость направления химических реакций от состояния реагентов и внешних условий.

В 1858 г. ученый приступил к исследованию действия водорода на водные растворы солей серебра, цинка на хлориды бария и кремния, магния на фторид алюминия. В этих весьма опасных опытах, проводимых в запаянных стеклянных трубках, когда давление доходило до 100 атм, химик обнаружил, что водород, магний и цинк вытесняют металлы из их солей, т.е. восстанавливают их.

Посвятив несколько лет исследованиям этих реакций восстановления металлов, химик убедился, что наибольшей устойчивостью (прочностью) обладают соединения противоположных по характеру элементов с наиболее близкими атомными весами («паями»).

Помимо этого Бекетов указал также на то, что количество тепла, выделяемое при соединении простых тел, представляет собою «разность между сродствами однородных и сродствами разнородных атомов», и что при реакции «менее плотное тело вытесняет более плотное». Определяя теплоты образования оксидов и хлоридов щелочных металлов, Бекетов впервые в мире получил безводные оксиды щелочных металлов.

Изучая вытеснение одних элементов другими, и впервые наблюдая протекание реакции в двух направлениях, Бекетов установил, что на направление химической реакции влияет концентрация реагентов и давление, дал формулировку состояния равновесия.

Читайте также:  Где во владивостоке можно сдать металл

Предположив также, что химические явления связаны с относительными массами и расстояниями между центрами действующих частиц, ученый вплотную подошел к одному из главных химических законов — закону действующих масс, устанавливающему соотношение между массами реагирующих веществ в химических реакциях при равновесии, а также зависимость скорости химической реакции от концентрации исходных веществ.

Этот закон в его классическом виде был сформулирован в 1867 г. норвежскими учеными К. Гульдбергом и П. Вааге.

Установив «вытеснительный ряд металлов», повторенный позднее электрохимическим рядом активности (напряжений), Бекетов в качестве наиболее сильных восстанавливающих агентов в этом ряду увидел глиний (алюминий) и магний. С их помощью ученый получил металлический барий, рубидий, цезий, хром, ванадий, марганец, вольфрам, освоил промышленное производство алюминия.

Описание опыта можно найти у самого Бекетова:

«Я взял безводную окись бария и, прибавив к ней некоторое количество хлористого бария, как плавня, положил эту смесь вместе с кусками глиния в угленой тигель и накаливал его несколько часов. По охлаждении тигля я нашел в нем металлический сплав уже совсем другого вида и физических свойств, нежели глиний. Этот сплав имеет крупнокристаллическое строение, очень хрупок, свежий излом имеет слабый желтоватый отблеск; анализ показал, что он состоит на 100 ч из 33,3 бария и 66,7 глиния или, иначе, на одну часть бария содержал две части глиния».

Типичная реакция с выделением огромного количества тепла Q (температура достигает 2000—3000 ; С) имеет вид:

2Al + Cr2О3 = Al2О3 + 2Cr + Q

Созданные Бекетовым основы методов алюминотермии и магниетермии позволили по аналогии создать позднее калиетермию и кальциетермию. Обобщает все эти методы металлотермия, с помощью которой удается получать титан, ниобий, цирконий, бор, уран, стронций, гафний, редкоземельные элементы, огнеупорный термиткорунд, магниды и другие металлы и сплавы.

Алюминотермия незаменима при сварке стальных трамвайных рельсов, проводов, труб, металлических конструкций. В место стыка засыпается термит (смесь порошка алюминия с железной окалиной), поджигается и буквально за минуту рельсы свариваются.

P.S. Говорят: химия — скучная вещь. Отнюдь. Однажды в кабинет Бекетова вбежал взволнованный слуга:

— Николай Николаевич! В вашей библиотеке воры!

Источник

Алюминотермия

Алюминотермия (алюмотермия; от лат. Aluminium и греч. therme — тепло, жар) — способ получения металлов, неметаллов (а также сплавов) восстановлением их оксидов металлическим алюминием:

При этой реакции выделяется большое количество теплоты, смесь нагревается до 1900—2400 °C.

История

Реакция открыта в 1859 г. русским химиком Н. Н. Бекетовым.

Алюминотермия (от алюминий и греч. thérme — теплота), алюминотермический процесс, получение металлов и сплавов восстановлением окислов металлов алюминием (см. Металлотермия). Шихта (из порошкообразных материалов) засыпается в плавильную шахту или тигель и поджигается с помощью запальной смеси. Если при восстановлении выделяется много теплоты, осуществляется внепечная алюминотермия, без подвода тепла извне, развивается высокая температура (1900—2400°С), процесс протекает с большой скоростью, образующиеся металл и шлак хорошо разделяются. Если теплоты выделяется недостаточно, в шихту вводят подогревающую добавку или проводят плавку в дуговых печах (электропечная алюминотермия). В Советском Союзе электропечная алюминотермия широко распространена. Алюминотермию применяют для получения низкоуглеродистых легирующих сплавов трудновосстановимых металлов — титана, ниобия, циркония, бора, хрома и др., для сварки рельсов и деталей стального литья; для получения огнеупора — термиткорунда. Алюминотермия открыта русским учёным Н. Н. Бекетовым (1859), в промышленности внепечной процесс освоен немецким химиком Г. Гольдшмидтом (1898).

Применение

Алюминотермия применяется для получения хрома, ванадия, марганца, вольфрама и других металлов и сплавов. Термит (смесь порошка алюминия с железной окалиной) используют при сварке рельсов, стальных труб, металлических конструкций.

См. также

Для улучшения этой статьи желательно ? :
  • Найти и оформить в виде сносок ссылки на авторитетные источники, подтверждающие написанное.

Wikimedia Foundation . 2010 .

Полезное

Смотреть что такое «Алюминотермия» в других словарях:

алюминотермия — (алюминий + гр. therme теплота, жар) алюмотермия способ получения металлов восстановлением их окислов алюминием, процесс сопровождается повышением температуры до 2 400 °с; а. используется также для сварки рельсов, труб и в зажигательных снарядах … Словарь иностранных слов русского языка

алюминотермия — алюмотермия Словарь русских синонимов. алюминотермия сущ., кол во синонимов: 1 • алюмотермия (1) Словарь синонимов ASIS. В.Н. Тришин … Словарь синонимов

АЛЮМИНОТЕРМИЯ — (от алюминий и греч. therme жар теплота), получение металлов и сплавов восстановлением оксидов металлов алюминием, которое сопровождается выделением значительного количества теплоты (см. Металлотермия) … Большой Энциклопедический словарь

Читайте также:  Поиск металла на полевых станах

алюминотермия — Способ выплавки низкоуглерод. ферросплавов с использованием Аl в кач ве восстановителя. Осн. особенности алюминотермич. процессов (АТП): выделение значит. к ва тепла — возможность процесса без подвода электрич. (тепловой) энергии извне, т.е … Справочник технического переводчика

АЛЮМИНОТЕРМИЯ — (от алюминий и греч. thermё тепло, жар) процессы, осн. на восстановлении порошкообразным алюминием кислородных соединений металлов. При А. развивается высокая темп pa (до 3000 °С). Применяется для нагрева и расплавления кромок соединяемых… … Большой энциклопедический политехнический словарь

алюминотермия — (от алюминий и греч. thérmē жар, теплота), получение металлов и сплавов восстановлением оксидов металлов алюминием, которое сопровождается выделением значительного количества теплоты (см. Металлотермия). * * * АЛЮМИНОТЕРМИЯ АЛЮМИНОТЕРМИЯ (от… … Энциклопедический словарь

алюминотермия — aliuminotermija statusas T sritis chemija apibrėžtis Metalų gavimo būdas, jų oksidus redukuojant aliuminiu. atitikmenys: angl. aluminothermic process; thermite process rus. алюминотермия; алюмотермия … Chemijos terminų aiškinamasis žodynas

Алюминотермия — (от Алюминий и греч. thérme теплота) а люминотермический процесс, получение металлов и сплавов восстановлением окислов металлов алюминием (см. Металлотермия). Шихта (из порошкообразных материалов) засыпается в плавильную шахту или тигель… … Большая советская энциклопедия

алюминотермия — алюминотермия, алюминотермии, алюминотермии, алюминотермий, алюминотермии, алюминотермиям, алюминотермию, алюминотермии, алюминотермией, алюминотермиею, алюминотермиями, алюминотермии, алюминотермиях (Источник: «Полная акцентуированная парадигма… … Формы слов

алюминотермия — алюминотерм ия, и … Русский орфографический словарь

Источник

Алюминотермия (алюминотермические реакции)

АЛЮМИНОТЕРМИЯ, в технике — совокупность производственных процессов, в которых применяется изобретенный в 1894 г. германским профессором Гольдшмидтом способ восстановления металлов из их окислов, основанный на том, что металлический алюминий при высоких температурах способен окисляться за счет кислорода металлических окислов. Реакция эта м. б. объяснена правилом Вертело, являющимся, однако, только некоторым приближением; согласно правилу, из нескольких возможных химических реакций имеет место та реакция, при которой выделяется наибольшее количество теплоты. Теплота, выделяющаяся при сгорании алюминия в Аl2О3, равна 7140 cal и превосходит теплоту сгорания (окисления) других металлов. На практике для протекания реакции восстановления окислов алюминием требуется наличность некоторых других факторов; так, например, часто для получения удовлетворительного результата необходимо прибавить вещества, вызывающие усиление реакции, или прибавить флюсы (например, плавиковый шпат CaF2), или сплавлять восстановляемые окислы с энергично действующими металлами, или, как при восстановлении хрома, прибавлять хромовокислые соли.

Для ускорения реакции прибавляют также бертолетовую соль КСlO3 (при получении В, Ве, Cr, Se, Ti, Th). Большое значение для правильного протекания реакции имеет выбор соответствующего металлического окисла и его количество: МnO2, например, реагирует с алюминием очень энергично, МnО — слишком слабо; наилучшим образом реакция восстановления марганца из его окислов протекает при смеси обоих окислов.

Алюминотермические реакции протекают с выделением большого количества тепла (температура реакций достигает 3000°С), причем восстановленный расплавленный металл нагревается до белого каления, расплавленные же глиноземистые шлаки всплывают наверх. Смесь окисла металла с алюминием в пропорции, необходимой для протекания реакции восстановления, называется термитом. В зависимости от наименования окисла металла, входящего в смесь, различают термиты железные, хромовые, марганцевые и другие. Чтобы вызвать реакцию, необходимо термитовую смесь предварительно зажечь; довольно высокую температуру воспламенения термита получают сжиганием небольшого количества легко воспламеняющейся зажигательной смеси из алюминиевого порошка с перекисью бария.

Алюминотермия дает возможность получить трудно-восстанавливаемые металлы и металлоиды, как, например, хром, марганец, бериллий, бор, в значительных количествах и в исключительно чистом виде. Особое значение алюминотермия получила в производстве высококачественных металлических сплавов различных специальных сталей. Застывшие шлаки по твердости превосходят корунд и в пульверизированном виде представляют очень хороший шлифовальный материал корубин, или искусственный корунд. Из железного термита, т. е. смеси окиси железа с алюминием, получают по способу Гольдшмидта малоуглеродистое ковкое железо — термитовое железо, — обладающее приблизительно следующими механическими свойствами: временное сопротивление на разрыв — 38,7 кг/мм 2 , удлинение — 19%, при химическом составе в %: С — 0,1; Мn — 0,8; Si — 0,09; S — 0,03; Р — 0,04; Сu — 0,09; Аl — 0,07; остаток — Fе. Реакция термита производится в особых железных тиглях с магнезитовой футеровкой. Расплавленное железо собирается на дне тигля, а сверху плавают состоящие почти из чистого глинозема шлаки, занимающие в тигле в три раза больший объем, чем железо, между тем как вес шлаков составляет половину веса употребленного термита; из 1 кг железного термита получают около 1/2 кг железа.

Читайте также:  Краска кирье по металлу инструкция

Различают два способа производства литья термитового железа из тиглей: 1) опрокидыванием специальных тиглей вместимостью от 1 до 25 кг термита, доведенного уже до состояния реакции; при этом способе литья необходимо предварительно слить верхний плавающий слой шлаков, занимающий около 3/4 всего объема массы, — эта работа, во избежание утечки железа, требует некоторой сноровки и м. б. исполнена лишь опытными литейщиками; для загрузки тигля на дно его сперва насыпают небольшое количество термита, который воспламеняют зажигательной смесью; когда реакция сгорания началась, наполняют весь тигель термитом и затем постепенно, по мере опускания реагирующей массы, добавляют остальное количество термита; 2) непосредственным спуском расплавленной массы из т. н. автоматического тигля через отверстие в магнезитовом камне, заделанном в дно такого тигля, при чем сперва вытекает расплавленное железо, а за ним шлак; автоматические тигли делают воронкообразной формы из листового железа с магнезитовой футеровкой вместимостью от одного до нескольких сот кг термита; диаметр спускного отверстия, например, у тигля на 50 кг, колеблется в пределах 10-15 мм; загружают эти тигли сразу всей массой термита, которую воспламеняют упомянутой зажигательной смесью.

Реакция железного термита, помимо производства ферросплавов и специальных сталей, находит также весьма широкое применение в металлообрабатывающей промышленности для сварки железных и стальных изделий. В целом ряде сварочных работ, например, для сварки железных труб, валов, станин, стержней и прочих, используют только высокую температуру реакции термита, получающееся же во время этого процесса термитовое железо в самой сварке никакого участия не принимает. В этом случае свариваемые концы очищают, притягивают друг к другу впритык при помощи особого зажимного аппарата (фиг. 1), окружают стык формой из огнеупорного материала, в которую затем выливают из специального тигля расплавленную массу термита. Последняя в продолжение точно известного промежутка времени успевает нагреть стык до необходимой для сварки температуры, после чего достаточно несколько подтянуть гайки зажимного аппарата, чтобы вызвать необходимое для надежной сварки давление свариваемых концов друг на друга. По окончании сварки аппарат разбирают, а наварившуюся вокруг стыка термитовую массу удаляют легкими ударами молотка (фиг. 2).

Другой способ сварки при помощи железного термита основан на использовании не одной только высокой температуры реакции сгорания Аl, но и восстановленного этой реакцией сильно нагретого, мягкого, малоуглеродистого железа, при чем применяемые при этом приемы сварки отличаются от таковых при сварке нагревом с давлением.

Расплавленную термитовую массу либо льют из специальных тиглей по удалении шлаков, либо спускают из воронкообразных, т. н. автоматических, тиглей при помощи примитивного спускового приспособления (фиг. 3) в расположенную непосредственно под тиглем форму из огнеупорной массы, при чем сперва вытекает находящееся на дне тигля расплавленное железо, а за ним шлаки, для отвода которых в верхней части формы имеется специальное отверстие. Для литья восходящим током форму обычно снабжают соответствующим литником. Этот способ применяют для сварки железнодорожных рельсов, при чем одновременно со сваркой стыка получаются прочно сваренные с рельсами стыковые накладки из мягкого термитового железа; такая сварка дает спокойный ход подвижного состава, а на ж. д. с электрической тягой, кроме того, уменьшает сопротивление обратному току, проводником которого служат рельсы. Этот способ сварки находит широкое применение во флоте, на верфях, на заводах и т. д. для сварки гребных и трансмиссионных валов, для исправления поломок этих валов и пороков в стальном фасонном литье и поковках, для наварки изношенных деталей машин и т. д. Даже поломки чугунных изделий при тщательном ведении процесса поддаются исправлению этим способом сварки, при чем термитовая реакция в этих случаях служит главным образом для подогрева поверхностей излома, а соединение частей достигается струей расплавленного чугуна; для подогрева достаточно 0,25-0,35 кг термита на см 2 поверхности излома. Наконец, термит дает возможность в случае внезапных поломок деталей машин при отсутствии запасных частей быстро получить расплавленную сталь соответствующего состава для новых отливок. Кроме того, алюминотермическими реакциями пользуются в производстве искусственного корунда, ферротитана, феррованадия и ферромолибдена.

Источник: Мартенс. Техническая энциклопедия. Том 1 — 1927 г.

Источник

Поделиться с друзьями
Металл
Adblock
detector