Какие факторы влияют на величину рекристаллизованного зерна металла

Факторы, влияющие на размер зерна рекристаллизованного металла

Размер зерна рекристаллизованного металла существенно влияет на его свойства. Металлы и сплавы, имеющие мелкое зерно, обладают большей прочностью и вязкостью. В ряде случаев необходимо, чтобы металл имел крупное зерно. Например, при крупном зерне техническое железо и трансформаторная сталь обладают более высокими магнитными свойствами.

На размер зерна после рекристаллизации влияют следующие факторы: 1) размер исходного зерна: чем меньше его размер, тем меньше размер и рекристаллизованного зерна; 2) температура нагрева : с увеличением температуры размер зерна возрастает; 3) время нагрева: при увеличении продолжительности нагрева величина зерна возрастает; 4) степень деформации перед нагревом (рис. 4.2):

D
e
e4
e3
e1eкр
Dисх

Рис. 4.2. Влияние степени пластической деформации (e) на величину

рекристаллизованного зерна (D): Dисх – исходный размер зерна;

eкр – критическая степень деформации

Если степень деформации увеличивается по сравнению с критической, то количество недеформированных зёрен уменьшается и поэтому постепенно бесцентровая рекристаллизация переходит в обычную первичную рекристаллизацию, которую иногда называют центровой.

При больших степенях деформации в результате нагрева происходит только первичная рекристаллизация. При этом, чем больше степень деформации, тем больше возникает зародышевых центров. Следовательно, зерно получается более мелким. Таким образом, критической называют минимальную степень деформации, начиная с которой при нагреве становится возможным процесс рекристаллизации.

studopedia.org — Студопедия.Орг — 2014-2021 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.001 с) .

Источник

Кристаллизация металлов и сплавов. Факторы, влияющие на величину и форму зерна.

Кристаллическое строение металлов, типы кристаллических решеток

Металл представляет собой вещество, состоящее из положительных ионов, вокруг которых по орбитам вращаются электроны. На последнем уровне число электронов невелико. Эти электроны имеют возможность «свободно» перемещаться по всему объѐму металлической кристаллической решетки, связывая как нейтральные атомы, так и положительно заряженные ионы. Наиболее распространены три вида кристаллических решеток металлов.

1.Объемно — центрированная кубическая (ОЦК), атомы располагаются в вершинах куба и в его центре (Na, K, Cr, V, W, Tiβ, ) 2.Гранецентрированная кубическая (ГЦК), атомы располагаются в вершинах куба и по центру каждой из 6 граней (Ag, Au, Pt, Cu, Al, Ni, ) 3.Гексагональная, в основании которой лежит шестиугольник: Простая – атомы располагаются в вершинах ячейки и по центру 2 оснований (углерод в виде графита); Плотноупакованная (ГПУ) – имеется 3 дополнительных атома в средней плоскости (цинк, магний, бериллий).

Отличительной особенностью кристаллических тел является то, что составляющие их атомы расположены в строго определенном порядке и образуют так называемую пространственную кристаллическую решетку.

Тела, в которых атомы расположены хаотически, т. е. в беспорядке, называются аморфными. К ним относятся: клей, пластмассы, стекло и др. От расположения атомов в кристаллической решетке зависят свойства металла.

В кубической объемноцентрированной решетке расположено девять атомов. Такую решетку имеют хром, вольфрам, молибден, ванадий и железо при температуре до 910° С.

В кубической гранецентрированной решетке расположено 14 атомов. Такую решетку имеют: медь, свинец, алюминий, золото, никель и железо при температуре 910—1400° С. В гексагональной плотноупакованной решетке расположено 17 атомов. Такую решетку имеют: магний, цинк, кадмий и другие металлы.

Расстояние между атомами в кристаллической решетке может быть различным по разным направлениям. Поэтому и свойства кристалла по разным направлениям не одинаковы. Такое явление называется анизотропией. Все металлы — тела кристаллические, поэтому они являются телами анизотропными. Тела, у которых свойства во всех направлениях одинаковые, называются изотропными.

Читайте также:  Вешалка напольная 105х45х170 см металл с чехлом spe34192 2 бордовая

Кусок металла, состоящий из множества кристаллов, обладает в среднем свойствами, одинаковыми во всех направлениях, поэтому он называется квазиизотропным (мнимая изотропность).

Анизотропность имеет большое практическое значение. Например, путем ковки, штамповки, прокатки в деталях получают правильную ориентацию кристаллов, в результате чего вдоль и поперек детали достигаются различные механические свойства. С помощью холодной прокатки добиваются высоких магнитных и электрических свойств в определенном направлении детали.

Кристаллизация металлов и сплавов. Факторы, влияющие на величину и форму зерна.

Кристаллизация – это переход вещества из жидкого состояния в твердое кристаллическое; заключается в образовании кристаллических зародышей и их росте при достижении расплавом определенной температуры. Процесс кристаллизации сопровождается выделением скрытой теплоты кристаллизации, и поэтому в процессе охлаждения в начале кристаллизации скорость охлаждения уменьшается. Кристаллизация металлов идет при постоянной температуре. Жидкий металл при охлаждении не испытывает качественных изменений: кривая охлаждения идет плавно. При достижении теоретической температуры кристаллизации на кривые охлаждения появляется горизонтальная площадка, так как отвод тепла компенсируется выделяющейся при кристаллизации скрытой теплотой кристаллизации. Когда закончится процесс кристаллизации, кривая охлаждения снижается опять плавно. В жидком металле происходит непрерывное движение атомов. С понижением температуры движения атомов замедляются. Они начинают сближаться, группироваться, образуя зародыши или центры кристаллизации. Процесс образования этих зародышей идет непрерывно, но наряду с ним происходит и процесс роста образовавшихся кристаллов. При небольшом переохлаждении образуется малое количество крупных кристаллов, при большом — образуется значительное количество мелких кристаллов. Это находит место в практике литейного производства: при литье тонкостенных деталей получается мелкозернистая структура, а при литье деталей с толстыми стенками — крупнозернистая. Кристаллизация сплавов при снижающейся, характер изменения которой (во времени) определяется диаграммой фазового состояния. Процесс кристаллизации сплавов отличается от процесса кристаллизации чистых металлов: у большинства сплавов на кривой охлаждения имеется две горизонтальные площадки, т.е. процесс кристаллизации происходит в интервале температур T1 — T2, где T1 — температура начала кристаллизации и T2—температура конца кристаллизации. Интервал температур с температуры начала до температуры конца кристаллизации называется температурным интервалом кристаллизации. В этом интервале сплав состоит из смеси жидкой и твердой (или твердых) фаз.

Факторы, влияющие на величину зерна. Большинство металлов кристаллизуется с переохлаждением, причем степень переохлаждения у разных металлов различна. Важнейшим фактором, влияющим на величину зерна при кристаллизации, является степень переохлаждения. Степень переохлаждения определяет число центров кристаллизации и скорость роста кристаллов. От числа центров и скорости роста кристаллов зависит величина зерна. При большом числе центров и незначительной скорости роста зерна будут мельче, при малом числе центров и большой скорости роста — крупнее. Если степень переохлаждения невелика, то число центров получается небольшое, а скорость роста кристаллов велика. Поэтому при медленном охлаждении получаются крупные зерна. При большой степени переохлаждения образуется большое число центров, а скорость роста невелика. Следовательно, при быстром охлаждении зерна будут мельче.

На величину зерна влияют также следующие факторы.
1. Высокая температура вызывает рост зерна. Этим объясняется «перегорание» электрических ламп: под действием высокой температуры происходит рост зерен и ослабление связи между ними, что приводит к обрыву нити.
2. Отсутствие внутренних препятствий способствует росту зерен. Если в расплавленный металл ввести мельчайшие частицы, называемые модификаторами, то они, являясь добавочными центрами кристаллизации, будут способствовать получению мелкого зерна и препятствовать росту зерен. Поэтому в стали, выплавленной с добавкой алюминия, не происходит роста зерна до температуры 950°, а введение в расплавленный вольфрам мельчайших частиц окиси тория предохраняет электролампы от «перегорания».
3. Разрушение зерна, например при ковке и штамповке, происходит из-за разрушения оболочки, препятствующей росту зерна. Поэтому для предотвращения роста зерна применяют после ковки и штамповки термическую обработку — например отжиг.

Читайте также:  Как разметка листового металла

Источник

Размер рекристаллизованного зерна в отожженном металле

Размер рекристаллизованного зерна — одна из важнейших характеристик отожженного металла. Время отжига, как правило, превышает продолжительность рекристаллизации обработки. Поэтому на размер зерна отожженного металла влияют все те факторы, которые сказываются и на первичной, и на собирательной рекристаллизации.

Анализируя факторы, влияющие на размер зерна при первичной рекристаллизации, удобно оперировать теми же параметрами, которые широко используются в теории фазовых превращений, а именно величинами с. з. ц. и л. с. р.

Скорость зарождения центров рекристаллизации (с. з. ц.) измеряется числом новых кристаллов, возникающих в единицу времени в единице объема. Линейная скорость роста новых кристаллов (л. с. р.) является скоростью перемещения границы зерна.

Размер зерна к моменту окончания рекристаллизации обработки зависит от соотношения с. з. ц. и л. с. р. Чем больше с. з. ц. и меньше л. с. р., тем мельче получается зерно к моменту окончания первичной рекристаллизации, и наоборот.

После окончания первичной рекристаллизации зерна укрупняются вследствие собирательной рекристаллизации. Поэтому на конечный размер зерна влияет также линейная скорость роста кристаллитов при собирательной рекристаллизации (вторичная рекристаллизация пока не рассматривается).

Многочисленные опыты показывают, что к основным факторам, влияющим на конечный размер зерна отожженного металла относятся следующие: температура и время отжига, степень деформации, размер исходного (до деформации) зерна, скорость нагрева и, конечно, химический состав.

«Теория термической обработки металлов»,
И.И.Новиков

Источник

Рекристаллизация. Факторы, влияющие на рекристаллизацию

Рекристаллизация.Пластически деформированные металлы могут рекристаллизоваться лишь после деформации, степень которой превосходит определенную минимальную величину, которая называется критической степенью деформации ( — относительное обжатие, где H0 — начальная высота заготовки, h — высота заготовки после обжатия). Если степень деформации меньше критической, то зарождения новых зерен при нагреве не происходит. Критическая степень деформации невелика (2 — 8%); для алюминия она близка к 2%, для железа и меди — к 5%.

Существует также температурный порог рекристаллизации — это наименьшая температура нагрева, обеспечивающая возможность зарождения новых зерен. Температурный порог рекристаллизации составляет некоторую долю от температуры плавления металла:

Значение коэффициента а зависит от чистоты металла и степени пластической деформации. Для металлов технической чистоты а = 0,3 — 0,4 и понижается с увеличением степени деформации. Уменьшение количества примесей может понизить а до 0,1 — 0,2. Для твердых растворов а = 0,5 — 0,6, а при растворении тугоплавких металлов может достигать 0,7 — 0,8. Для алюминия, меди и железа технической чистоты температурный порог рекристаллизации равен соответственно 100° С, 270° С и 450° С.

Рекристаллизация состоит из зарождения новых зерен и их последующего постепенного роста. Зарождение новых зерен при рекристаллизации происходит в участках с наибольшей плотностью дислокаций, обычно на границах деформированных зерен. Чем больше степень пластической деформации, тем больше возникает центров рекристаллизации.

С течением времени образовавшиеся центры новых зерен увеличиваются в размерах вследствие перехода атомов от деформированного окружения к более совершенной решетке.

Рассмотренная стадия рекристаллизации называется первичной рекристаллизацией или рекристаллизацией обработки. Первичная рекристаллизация заканчивается при полном поглощении новыми зернами старых деформированных зерен.

По завершении первичной рекристаллизации происходит рост образовавшихся зерен; эта стадия рекристаллизации называется собирательной рекристаллизацией. Собирательная рекристаллизация не связана с предварительной пластической деформацией металла. Этот процесс самопроизвольно развивается при достаточно высоких температурах в связи с тем, что укрупнение зерен приводит к уменьшению свободной энергии металла из-за уменьшения поверхностной энергии (чем крупнее кристаллы, тем меньше суммарная протяженность границ).

Читайте также:  Пункты приема металлолома сертолово

Рост зерен происходит путем перехода атомов от одного зерна к соседнему через границу раздела, одни зерна при этом постепенно уменьшаются в размерах и затем исчезают, а другие становятся более крупными, поглощая соседние зерна. С повышением температуры рост зерен ускоряется. Чем выше температура нагрева, тем более крупными окажутся рекристаллизованные зерна (рис.9).

Рисунок 9. Схема изменения микроструктуры наклепанного металла при нагреве: а) наклепанный металл; б) начало первичной рекристаллизации; в) конец первичной рекристаллизации; г) собирательная рекристаллизация.

Рекристаллизация полностью снимает наклеп, созданный при пластической деформации; металл приобретает равновесную структуру с минимальным количеством дефектов кристаллического строения. Восстанавливаются все физические и механические свойства (рис.10).

Время выдержки при нагреве оказывает влияние на размер зерна в том же направлении, что и температура, но значительно слабее. С увеличением степени деформации выше критической размер зерен уменьшается вследствие увеличения числа центров рекристаллизации, а повышение температуры нагрева укрупняет зерна из-за ускорения собирательной рекристаллизации.

В рекристаллизованном металле при известных условиях возникает предпочтительная ориентировка зерен — текстура. Текстура рекристаллизации, также как и текстуры другого происхождения, вызывают значительную анизотропию физических и механических свойств. Для конструкционных материалов общего назначения анизотропия свойств обычно нежелательна. Однако при использовании сплавов с особыми физическими свойствами (магнитными, с особыми зависимостями теплового расширения, с особыми упругими свойствами) анизотропию удается практически использовать, улучшая то или иное свойство в определенном направлении изделия. Так, например, широко используется обработка, состоящая из холодной пластической деформации и последующего отжига (нагрева), приводящая к получению текстуры рекристаллизации в листах трансформаторного железа. Образование текстуры обеспечивает более легкую намагничиваемость в определенных направлениях листа. Применение текстурованного трансформаторного железа позволяет уменьшить потери на перемагничивание.

Возможность образования текстуры при рекристаллизации зависит от химического состава сплавов, в технических металлах — от природы и количества примесей, от температуры и времени выдержки при рекристаллизации, от сечения изделия и ряда других технологических факторов.

Рисунок 10 — Схема изменения свойств наклепанного металла при возврате и рекристаллизации

Источник

Влияние степени деформации на размер зерна

Исключительно сильно на размер зерна в момент окончания первичной рекристаллизации влияет степень деформации. Так как продолжительность отжига обычно превышает длительность первичной рекристаллизации, то графики, подобные представленному на рисунке, отображают влияние степени деформации на конечный размер зерна, полученный после собирательной рекристаллизации.

Последняя лишь укрупняет зерно и качественно не меняет характера зависимости размера кристаллитов от степени деформации в момент окончания первичной рекристаллизации.

Микроструктура пластинок чистого алюминия

Микроструктура пластинок чистого алюминия, отожженных при 500 °С после растяжения
с разной степенью деформации (цифры на рисунке).
Натуральная величина.

Влияние степени деформации на размер зерна

Влияние степени деформации на размер зерна, полученного при последующем отжиге при двух температурах: кр — критическая степень деформации, t2 > t1.

С повышением степени деформации возрастает плотность дислокаций и избыток дислокаций одного знака и естественно, что с. з. ц. и л. с. р. увеличиваются. Если бы обе эти скорости возрастали в одинаковой мере при увеличении степени деформации, то она не влияла бы на размер рекристаллизованного зерна.

Так как в действительности размер рекристаллизованного зерна уменьшается с увеличением степени деформации, то можно сделать вывод, что при этом с. з. ц. повышается быстрее, чем л. с. р. Это подтверждается прямыми измерениями этих скоростей.

При сравнительно небольшой критической деформации (обычно от 1 до 15%,) при отжиге вырастает очень крупное зерно, иногда достигающее нескольких сантиметров.

Механизм образования крупного зерна при критической деформации качественно отличен от механизма рекристаллизации в закритической области, т. е. при более высоких степенях деформации.

«Теория термической обработки металлов»,
И.И.Новиков

Источник

Поделиться с друзьями
Металл
Adblock
detector