- Влияние легирующих элементов на свариваемость сталей
- Как влияют основные легирующие элементы и примеси на свариваемость сталей
- Влияние углерода на свариваемость стали
- Влияние серы на свариваемость сталей
- Влияние фосфора на свариваемость сталей
- Влияние кремния на свариваемость
- Влияние марганца на свариваемость сталей
- Влияние хрома на свариваемость
- Влияние никеля на свариваемость
- Влияние молибдена на свариваемость
- Влияние ванадия на свариваемость
- Влияние вольфрама на свариваемость
- Влияние титана и ниобия на свариваемость
- Свариваемость сталей
- Основные критерии, устанавливающие свариваемость
- Классификация сталей по свариваемости
- Группы свариваемости
- Как влияют на свариваемость легирующие примеси
- Влияние содержания углерода на свариваемость стали
- Свариваемость низкоуглеродистых сталей
- Свариваемость закаленной стали
- Свариваемость сталей — классификация, характеристики, определение
- Понятия свариваемости
- Основные критерии, устанавливающие свариваемость
- Определение свариваемости и ее категории
- Влияние основных элементов на свариваемость сталей
- Как влияют на свариваемость легирующие примеси?
Влияние легирующих элементов на свариваемость сталей
Влияние легирующих элементов на свариваемость сталей часто имеет решающее значение. Конечно, на свариваемость сталей влияет и толщина свариваемых металлов и вид сварки и температура окружающей среды и чёткое соблюдение технологии сварки.
Даже плохо свариваемые стали можно успехом сваривать, если обеспечить нужную интенсивность нагрева, и охлаждения. А также, провести термообработку до и после сварки. И, наоборот, стали, сваривающиеся без ограничений, можно сварить с множеством дефектов в сварном шве.
Но, хотя факторов, влияющих на свариваемость сталей несколько, именно химический состав стали играет главную роль. Потому что и технология сварки и применяемый вид сварки зависят, в большинстве случаев, от химического состава свариваемой стали.
Как влияют основные легирующие элементы и примеси на свариваемость сталей
Не все легирующие элементы влияют на свариваемость сталей отрицательно. Какие-то элементы могут оказывать положительное влияние на свариваемость, а, какие-то, при небольшом содержании, вовсе не оказывают заметного влияния на процесс сварки металлов.
Влияние углерода на свариваемость стали
Углерод является наиболее распространённым и важных компонентом в составе углеродистых и других сталях. Углерод, во многом, определяет свойства стали при её обработке и сварке, и, во многом, определяет группу свариваемости стали. Сварка низкоуглеродистых сталей, с содержанием углерода до 0,25% происходит без ограничений. Среднеуглеродистые стали, с содержанием углерода свыше 0,25% и до 0,35% свариваются удовлетворительно. Стали, содержащие в своём составе углерода более 0,35%, свариваются ограничено, а высокоуглеродистые стали с содержанием углерода более 0,45% относятся к трудносвариваемой группе сталей.
Влияние серы на свариваемость сталей
Сера является вредной примесью в стали и содержание её с составе стали не допускается более, чем 0,05%. Сера, вступая во взаимодействие с железом, образует сернистое железо Fe2S3 которое имеет температуру плавления более низкую, чем у стали, и является трудно растворимым в расплавленной стали.
В процессе кристаллизации стали, сернистое железо кристаллизуется между кристаллами металла сварного шва. Это приводит к возникновению горячих трещин.
Влияние фосфора на свариваемость сталей
Фосфор, также как и сера, является вредной примесью в составе сталей и его содержание не допускается более, чем 0,05%. Фосфор, соединяясь с железом, образует фосфористое железо, которое обладает высокой хрупкостью и придаёт стали хладноломкость.
Влияние кремния на свариваемость
Обычно, содержание кремния в стали составляет от 0,02% до 0,3%. При таком содержании заметного влияния на свариваемость стали легирование кремнием не оказывает.
Если содержание кремния в составе стали повышенное и составляет 0,8-1,5%, то процесс варки затрудняется, т.к. кремний повышает жидкотекучесть стали и, взаимодействуя с металлом, образует тугоплавкие химические соединения.
Влияние марганца на свариваемость сталей
Обычно, содержание марганца в стали колеблется в пределах 0,3-0,8%. Считается, что при содержании до 1,5-2% марганец не оказывает существенного влиянии на свариваемость. При повышенном содержании марганца (свыше 2%), механические свойства стали (прочность, твёрдость, склонность к закалке) возрастают, а это приводит к риску образования холодных трещин при сварке.
При сварке сталей, с высоким содержанием марганца (более 11%), происходит его выгорание. В этом случае необходимо восполнять марганец через электродное покрытие, флюсы или другими способами.
Влияние хрома на свариваемость
Содержание хрома с составе сталей обычно находится в пределах до 0,3%. При содержании хрома в стали менее 1% сильного влияния на свариваемость он не оказывает. Однако, при повышенном содержании хрома он снижает свариваемость стали из-за образования тугоплавких оксидов Cr2O3. Кроме того, в зоне термического влияния резко повышается твёрдость из-за образования карбидов хрома Cr2С3. Также хром способствует появлению закалочных структур.
Влияние никеля на свариваемость
Обычно, содержание никеля в составе стали не превышает 0,3%, однако, в легированных сталях его содержание может достигать 35%. Никель способствует измельчению зёрен метала, улучшает пластичность стали и её прочность и оказывает положительное влияние на свариваемость, особенно, если в составе стали повышенное содержание хрома. Поэтому, стали, с высоким содержанием хрома, часто легируют никелем.
Влияние молибдена на свариваемость
Молибден часто присутствует в составе теплоустойчивых сталей с содержанием 0,15-0,8%. В сталях, которые эксплуатируются в условиях высоких температур и ударных нагрузок, его содержание может достигать 5% и более.
Молибден способствует измельчению зёрен металла, повышает прочность и ударную вязкость. Однако, оказывает отрицательное влияние на свариваемость, т.к. способствует образованию трещин в металле сварного шва и в зоне термического влияния. При сварке молибден быстро выгорает, поэтому, необходимы меры, препятствующие его выгоранию в процессе сварки.
Влияние ванадия на свариваемость
Содержание ванадия в сталях обычно находится в пределах 0,2-1,5%. Ванадий увеличивает механические свойства стали (прочность, ударную вязкость, упругость) и снижает свариваемость, т.к. является причиной появления закалочных структур в металле сварного шва и в зоне термического влияния.
Влияние вольфрама на свариваемость
Вольфрам содержится в сталях в пределах 0,8-18%. Он увеличивает твёрдость, и теплостойкость стали, снижая, при этом, её свариваемость. При сварке вольфрам легко окисляется и выгорает.
Влияние титана и ниобия на свариваемость
Титаном и ниобием легируют нержавеющие и жаропрочные стали и их содержание, обычно, находится в пределах 0,5-1%. Титан и ниобий хорошо образуют карбиды, поэтому, препятствуют образованию твёрдых карбидов хрома. При сварке нержавеющих сталей ниобий повышает риск образования горячих трещин. Титан отрицательного влияния на свариваемость не оказывает.
Источник
Свариваемость сталей
Выделяют довольно большое количество параметров, которые определяют основные свойства металла. Среди них выделяют показатель свариваемости. На сегодняшний день сварка стали проводится крайне часто. Подобный способ соединения металлов и других материалов характеризуется высокой эффективностью, так сварной шов может выдерживать большую нагрузку. При плохом показателе провести подобную работу сложно, в некоторых случаях даже невозможно. Все металлы разделяются на несколько групп, о чем далее поговорим подробнее.
Основные критерии, устанавливающие свариваемость
Оценивая свариваемость сталей, всегда уделяют внимание химическому составу металла. Некоторые химические элементы могут повысить этот показатель или снизить его. Углерод считается самым важным элементов, который определяет прочность и пластичность, степень закаливаемости и плавкость. Проведенные исследования указывают на то, что при концентрации этого элемента до 0,25% степень обрабатываемости не снижается. Увеличение количества углерода в составе приводит к образованию закалочных структур и появлению трещин.
К другим особенностям, которые касаются рассматриваемого вопроса, можно отнести нижеприведенные моменты:
- Практически во всех металлах содержатся вредные примеси, которые могут снижать или повышать обрабатываемость сваркой.
- Фосфор считается вредным веществом, при повышении концентрации появляется хладноломкость.
- Сера становится причиной появления горячих трещин и появлению красноломкости.
- Кремний присутствует практически во всех сталях, при концентрации 0,3% степень обрабатываемости не снижается. Однако, если увеличить его до 1% могут появится тугоплавкие оксиды, которые и снижают рассматриваемый показатель.
- Процесс сварки не затрудняется в случае, если количество марганца не более 1%. Уже при 1,5% есть вероятность появления закалочной структуры и серьезных деформационных трещин в структуре.
- Основным легирующим элементом считается хром. Он добавляется в состав для повышения коррозионной стойкости. При концентрации около 3,5% показатель свариваемости остается практически неизменным, но в легированных составах составляет 12%. При нагреве хром приводит к появлению карбида, который существенно снижает коррозионную стойкость и затрудняет процесс соединения материалов.
- Никель также является основным легирующим элементом, концентрация которого достигает 35%. Это вещество способно повысить пластичность и прочность. Никель становится причиной улучшения основных свойств материала.
- Молибден включается в состав в небольшом количестве. Он способствует повышению прочности за счет уменьшения зернистости структуры. Однако, на момент воздействия высокой температуры вещество начинает выгорать, за счет чего появляются трещины и другие дефекты.
- В состав часто в качестве легирующего элемента добавляется медь. Ее концентрация составляет около 1%, за счет чего немного повышается коррозионная стойкость. Важной особенностью назовем то, что медь не ухудшает обработку сваркой.
В зависимости от особенностей структуры и химического состава материала все сплавы делятся на несколько групп. Только при учете подобной классификации можно выбрать наиболее подходящий сплав.
Классификация сталей по свариваемости
Хорошей обрабатываемостью обладают сплавы, в которых при нагреве не образуются трещины. По данной характеристике выделяют четыре основных группы:
- Хорошая обрабатываемость сваркой определяет то, что сталь после термической обработки остается прочным и надежным. При этом создаваемый шов может выдерживать существенное механическое воздействие.
- Удовлетворительная степень позволяет проводить обработку без предварительного подогрева. За счет этого существенно ускоряется процесс, а также снижаются затраты.
- Ограниченно свариваемые стали сложны в обработке, сварку можно провести только при применении специального оборудования. Именно поэтому повышается себестоимость самого процесса.
- Плохая податливость сварке не позволяет проводить рассматриваемую обработку, так как после получения шва могут появится трещины. Именно поэтому подобные материалы не могут использоваться для получения ответственных элементов.
Классификация сталей по свариваемости
Каждая группа характеризуется своими определенными особенностями, которые нужно учитывать. Сталь 20 относится к первой группе, в то время как распространенная сталь 45 обладает низкой податливостью к сварке.
Группы свариваемости
Все группы свариваемости сталей характеризуются своими определенными особенностями. Среди них можно отметить следующие моменты:
- Первая группа, которая характеризуется хорошей свариваемостью, может применяться при сварке без предварительного подогрева и последующей термической обработки шва. Отпуск выполняется для снижения напряжения в металле. Как правило, подобное свойство связано с низкой концентрацией углерода.
- Вторая характеризуется тем, что склонна к образованию трещин и дефектов на швах. Именно поэтому рекомендуется проводить предварительный подогрев материала, а также последующую термическую обработку для снижения напряжений.
- При ограниченном показателе сталь склонна к образованию трещин. Для того чтобы исключить вероятность появления трещин следует материал предварительно разогреть, после сварки в обязательном порядке проводится термообработка.
- Последняя группа характеризуется тем, что в большинстве случаев на швах образуются трещины. При этом предварительный разогрев структуры не во многом решает проблему. После сварки обязательно проводится многоступенчатое улучшение.
Каждый сплав и металл относится к определенной группе. Кроме этого, степень свариваемости меняется после улучшения материала, к примеру, путем азотирования или закалки.
Как влияют на свариваемость легирующие примеси
Как ранее было отмечено, включение в состав большого количества легирующих элементов приводит к изменению основных характеристик. При этом отметим следующие моменты:
- При низком показателе концентрации сталь лучше поддается сварке.
- Некоторые химические вещества могут повысить рассматриваемый показатель, другие ухудшить.
Именно поэтому при выборе легированного сплава уделяется внимание не только типу легирующих элементов, но и их концентрации. Принятые стандарты ГОСТ определяют то, что при маркировке могут указывать основные химические вещества и их количество в составе.
Влияние содержания углерода на свариваемость стали
Во многом именно углерод определяет основные эксплуатационные характеристики сплава. Слишком высокая концентрация подобного химического вещества приводит к повышению твердости и прочности, но также и хрупкости. Кроме этого, в несколько раз снижается степень свариваемости. К другим особенностям отнесем следующие моменты:
- Если в составе углерода не более 0,25%, то рассматриваемый показатель остается на достаточно высоком уровне.
- Слишком большое количество углерода в составе приводит к тому, что металл после термического воздействия начинает менять свою структуру, за счет чего появляются трещины.
Стоит учитывать, что проводимая химикотермическая процедура может привести к снижению податливости к рассматриваемому способу соединения. Именно поэтому улучшение сплава проводится после создания конструкции путем обработки шва.
Свариваемость низкоуглеродистых сталей
Низкоуглеродистые сплавы хорошо подаются свариванию. При этом можно отметить следующие моменты:
- В подобных сплава концентрация углерода менее 0,25%. Этот показатель свойственен сплавам, которые имеют повышенную гибкость и относительно невысокую твердость поверхностного слоя. Кроме этого, снижается значение хрупкости. Поэтому низкоуглеродистые стали часто используют при создании листовых заготовок. При добавлении небольшого количество легирующих элементов может быть повышена коррозионная стойкость.
- Для повышения основных характеристик в состав могут добавлять различные легированные элементы, но в небольшом количестве. Примером можно назвать марганец и никель, а также титан.
Как правило, подобные металлы не нужно перед обработкой подвергать подогреву, а после проведения процедура закалка или отпуск выполняется только для при необходимости.
Свариваемость закаленной стали
Распространенной термической обработкой можно назвать закалку. Она предусматривает воздействие высокой температуры, которая может изменить структуру материала. После охлаждения происходит перестроение структуры, за счет чего происходит упрочнение структуры и повышение твердости поверхностного слоя. К другим особенностям отнесем следующие моменты:
- Закалка предусматривает увеличение концентрации углерода в поверхностном слое. Именно поэтому степень свариваемости существенно снижается.
- Подогрев заготовки проводится для того, чтобы упростить проводимую работу. Для этого может использоваться газовая грелка или иной источник тепла.
Закаленная сталь сложна в обработке. Кроме этого, если ранее не проводился отпуск в структуре может быть переизбыток напряжения, что и приводит к появлению трещин.
Повторная обработка швов может не привести к повышению их прочности.
В заключение отметим, что хорошей податливость сварке обладают металлы из различных групп. Примером можно назвать некоторые нержавейки, которые даже после воздействия тепла обладают коррозионной устойчивостью. Именно поэтому для сварочных работ рекомендуется выбирать материал, который характеризуется хорошей обрабатываемостью.
Источник
Свариваемость сталей — классификация, характеристики, определение
Сталь – основной конструкционный материал, который представляет собой сплав железа с углеродом и разными примесями. Все элементы, которые входят в состав стальных изделий, оказывают влияние на ее характеристики (в частности, на свариваемость сталей).
Понятия свариваемости
Физическая свариваемость — подразумевает возможность получения монолитных сварных соединений с химической связью. Такой свариваемостью обладают практически все технические сплавы и чистые металлы, а также ряд сочетаний металлов с неметаллами.
Технологическая свариваемость — это характеристика металла, определяющая его реакцию на воздействие сварки и способность образовывать сварное соединение с заданными эксплуатационными свойствами. В этом случае свариваемость рассматривается как степень соответствия свойств сварных соединений одноименным свойствам основного металла или их нормативным значениям.
Основные критерии, устанавливающие свариваемость
Главным показателем свариваемости является углеродный эквивалент, который обозначается, как Сэкв. Данный условный коэффициент учитывает уровень воздействия на свойства сварного шва карбона, легирующих компонентов.
Факторы, влияющие на свариваемость сталей:
- Толщина металлического образца
- Объем вредных примесей
- Условия окружающей среды
- Вместимость углерода
- Уровень легирования
- Микроструктура
Основным параметром для информации является химический состав материала.
Определение свариваемости и ее категории
Свариваемость сталей – способность получать при выбранном оборудовании и технологии проведения процесса качественное соединение частей изделия, соответствующее требованиям эксплуатации конечного продукта. Проще говоря, место соединения должно максимально приближаться к прочностным характеристикам свариваемой марки стали. Различают два вида свариваемости: физическую и технологическую. В первом случае получают соединение с химической связью, что характерно для чистых металлов и технических сплавов. Технологический вид свариваемости заключается в характеристике места соединения стальных заготовок после выполнения сварочного процесса. Шов и околошовная зона должны соответствовать свойствам, которые предъявляются к изделию, и быть надежными в течение всего срока эксплуатации.
На свариваемость оказывают влияние такие факторы:
- количество углерода, легирующих элементов и вредных примесей, имеющихся в марке стали в %;
- чувствительность металла к нагреву;
- химическая активность;
- склонность к окислительным процессам.
Совокупность факторов позволила марки сталей по свариваемости разделить на 4 группы: хорошо, удовлетворительно, ограниченно и плохо подлежащие сварочному процессу. Влияние оказывает и квалификация сварщика. Если человек – дилетант, то качество соединения будет очень низким.
Вид качественно выполненного сварного шва при соединении труб из высоколегированной стали:
Характеристики групп некоторых марок сталей и нюансы проведения сварки указаны в таблице:
Группа по свариваемости | Содержание углерода в %, | Содержание легирующих элементов в % | ГОСТ | Марка стали | Особенности проведения сварочного процесса |
---|---|---|---|---|---|
I (хорошо) | не более 0,2 | не более 2,5 | 380-94 | Ст1 ÷ Ст4 (сп, кп, пс) | Выполняется по технологии, не требующей дополнительных мероприятий на соответствующих толщине металла режимах |
803-81 | 10ЮА, 18 ЮА | ||||
977-88 | 15Л, 20Л, 25Л, 08ГДНФЛ, 2ДН2ФЛ, 13ХДНФТЛ | ||||
1050-88 | 08 ÷ 25 (пс, кп) | ||||
4041-71 | 25пс, 08Ю | ||||
4543-71 | 15Г ÷ 25Г, 10Г2, 16Х, 20Х, 12ХН, 15 ХА, 15 ХФ | ||||
II (удовлетвори- тельно) | 0,2 ÷ 0,35 | 2,5 ÷ 10 | 380-94 | Ст5 (пс, сп) | При сваривании необходимо: — готовить кромки; — придерживаться режима сварки; — применять соответствующие флюсы и присадочные материалы. В некоторых случаях осуществлять подогрев до температуры 100 ÷ 200 0С с последующей термообработкой |
977-88 | 20ГЛ,20ГСЛ, 20ФЛ, 20Г1ФЛ, 20ДХЛ, 12ДХН1МФЛ | ||||
1050-88 | 30 | ||||
10702-78 | 20Г2С | ||||
19281-89 | 15Г2АФДпс, 16Г2АФД, 15Г2СФ, 15Г2СФД | ||||
III (ограниченно) | 0,35 ÷ 0, 45 | 2,5 ÷ 10 | 977-88 | 35Л 40Л, 45Л,35ГЛ, 32Х06Л, 45ФЛ, 40ХЛ, 35ХГСЛ, 35НГМЛ, 20ХГСНДМЛ, 30ХГСФЛ, 23ХГС2МФЛ | Качество обеспечивается предварительным нагревом заготовок до температуры не выше 250 0С и проведением термической обработки после соединения по режиму, соответствующему марке стали |
1050-88 | 35, 40, 45 | ||||
4543-71 | 25ХГСА, 29ХН3А, 12Х2Н4А, 20Х2Н4А, 20ХН4А, 25ХГМ, 35Г, 35Г2, 35Х, 40Х, 33ХС, 38ХС, 30ХГТ, 30ХРА, 30ХГС, 30ХГСА, 35ХГСА, 25ХГНМТ, 30ХГНЗА, 20Х2Н4А | ||||
11268-76 | 12Х2НВФА | ||||
IV (плохо) | выше 0,45 | выше 10 | 977-88 | 50Л, 55Л, 30ХНМЛ, 25Х2Г2ФЛ | Сварку выполняют с термообработкой до начала осуществления сварочного процесса, подогревом в процессе соединения и термообработкой после окончания сварки |
1055-88 | 50, 55 | ||||
1435-77 | У7 ÷ У13А | ||||
4543-71 | 50Г, 45Г2, 50Г2, 45Х, 40ХС, 50ХГ, 50ХГА, 50ХН, 55С2, 55С2А, 30ХГСН2А и др. | ||||
5950-2000 | 9Х, 9X1 | ||||
10702-78 | 38ХГНМ |
Таблица свариваемости позволяет, если известна марка металла, сразу отнести его к конкретной группе и исходя из этого грамотно подобрать режим и способ осуществления соединения. Низкоуглеродистые и низколегированные стали свариваются любыми видами сварки без каких-либо ограничений, остальные марки требуют дополнительных мероприятий, которые позволят выполнить соединение соответствующего качества.
Внимание! Сварка при температуре ниже -5 °C не должна выполняться: качество соединения будет невысоким.
Влияние основных элементов на свариваемость сталей
Углерод, если его в стали менее 0,25%, свариваемость не ухудшает, а при большем его содержании свариваемость ухудшается, поскольку в зоне термического воздействия образуются закаленные структуры, что имеет следствием образование трещин. Если повышенное содержание углерода отмечается в присадочном материале, это приводит к пористости шва.
Марганец при его содержании не более 0,8% свариваемость не ухудшает, но при превышении этого показателя велики риски появления трещин из-за того, что этот элемент способствует закаленности стали.
Кремний в пределах 0,02–0,35% никак не воздействует на качество сваривания, а при содержании от 0,8 до 1,5% существенно затрудняет сварку по причине повышенной жидкотекучести и образования тугоплавких оксидов кремния.
Ванадий способствует закаленности стали, что усложняет процесс сварки. При сваривании ванадий, активно окисляясь, выгорает.
Вольфрам повышает прочность стали и усложняет сварку по причине сильного окисления.
Никель повышает пластичность и мощность, при этом не ухудшая свариваемость стали.
Молибден при сварке активно окисляется и выгорает, способствуя образованию трещин.
Хром, образующий тугоплавкие карбиды, значительно затрудняет сварку.
Ниобий и титан в процессе сварки соединяются с углеродом и препятствуют образованию карбида хрома, способствуя улучшению свариваемости.
Медь улучшает свариваемость, повышая прочность и пластичность стали, делая ее более устойчивой к коррозии.
Кислород работает на снижение пластичности и прочности стали, ухудшая ее свариваемость.
Азот обладает способностью создавать нитриды, то есть химические соединения с железом, которые повышают твердость и прочность, существенно снижая показатели пластичности стали.
Водород негативно сказывается на свариваемости, поскольку он накапливается в шве, вызывая образование пор и мелких трещин.
Фосфор – вредная добавка, повышающая твердость стали и делающая ее более хрупкой, что приводит к образованию холодных трещин.
Сера крайне нежелательна, поскольку она способствует быстрому образованию горячих трещин. При превышении содержания серы свариваемость резко ухудшается.
Как влияют на свариваемость легирующие примеси?
Влияние главных легирующих элементов на свариваемость стали
- Фосфор, сера – вредоносные примеси. Содержание данных химических элементов для низкоуглеродистых сталей 0,4-0,5%.
- Углерод – важный компонент в составе сплавов, который определяет такие показатели, как закаливаемость, пластичность, прочность, другие свойства материала. Содержание углерода в пределах 0,25% не воздействует на качество сварки. Наличие более 0,25% данного хим. элемента способствует формированию закалочных соединений, зоны термического влияния, образуются трещины.
- Медь. Содержание меди как примеси не более 0,3%, как добавки для низколегированных сталей – пределах 0,15-0,50%, как легирующего компонента – не более одного процента. Медь улучшает коррозионную стойкость металла, при этом не ухудшает показатели качества сваривания.
- Марганец. Содержание марганца до одного процента не затрудняет сварочный процесс. Если марганца 1,8-2,5%, то не исключается образование закалочных структур, трещин, зоны термического влияния.
- Кремний. Этот химический элемент присутствует в металле как примесь — 0,30 процентов. Такое количество кремния не влияет на показатель качества соединения металлов. При наличии кремния в пределах 0,8-1,5%, он выступает легирующим компонентом. В данном случае существует вероятность формирования тугоплавких оксидов, ухудшающих качество соединения металлов.
- Никель, как и хром, присутствует в низкоуглеродистых сталях, его содержание составляет до 0,3%. В низколегированных металлах никеля может быть около 5%, высоколегированных – порядка 35 процентов. Химический компонент повышает пластичность, прочностные характеристики металла, повышает качество сварных соединений.
- Хром. Количество данного компонента в низкоуглеродистых сталях ограничено до 0,3 процентов, его содержание в низколегированных металлах может быть в пределах 0,7-3,5%, легированных – 12-18 процентов, высоколегированных примерно 35%. В момент сваривания хром способствует формированию карбидов, значительно ухудшающих коррозионную устойчивость металла. Хром способствует формированию тугоплавких оксидов, которые негативно влияют на качество сварки.
- Молибден. Наличие этого химического элемента в металле ограничено 0,8 процентами. Такое количество молибдена позитивно сказывается на прочностных характеристиках сплава, но в процессе сварки элемент выгорает, в результате чего на наплавленном участке изделия формируются трещины.
- Ванадий. Содержание этого элемент в легированных сталях может составлять от 0,2 до 0,8 процентов. Ванадий способствует повышению пластичности, вязкости металла, улучшает его структуру, повышает показатель прокаливаемости.
- Ниобий, титан. Данные химические компоненты содержатся в жаропрочных, коррозионно-стойких металлах, их концентрация составляет не более одного процента. Ниобий и титан понижают показатель чувствительности металлического сплава к межкристаллитной коррозии.
Источник