- Строение атома магния
- Общие сведения о строении атома магния
- Электронное строение атома магния
- Примеры решения задач
- Магний, свойства атома, химические и физические свойства
- Магний, свойства атома, химические и физические свойства.
- Атом и молекула магния. Формула магния. Строение магния:
- Изотопы и модификации магния:
- Свойства магния (таблица): температура, плотность, давление и пр.:
- Физические свойства магния:
- Химические свойства магния. Взаимодействие магния. Реакции с магнием:
Строение атома магния
Общие сведения о строении атома магния
Порядковый номер равен 12. Заряд ядра равен +12. Атомный вес – 24,132 а.е.м.
Электронное строение атома магния
Магний расположен в третьем периоде, значит, он имеет три оболочки, одна из которых внешняя, содержащая валентные электроны. Атом магния имеет положительно заряженное ядро (+12), в котором имеется 12 протонов и 12 нейтронов (разница между атомным весом и порядковым номером). По орбитам вокруг ядра движутся 12 электронов.
Рис. 1. Схематичное изображение строения атома магния.
Электронную конфигурацию атома магния можно записать двояко:
1s 2 2s 2 2p 6 3s 2 .
Магний относится к семейству s-элементов. Энергетическая диаграмма атома магния (на ней изображаются только валентные электроны) имеет вид:
В результате химического взаимодействия магний теряет свои валентные электроны, т.е. является их донором, и превращается в положительно заряженный ион (Mg 2+ ):
В соединениях магний проявляет степень окисления +2.
Примеры решения задач
Задание | Химическому элементу главной подгруппы соответствует высший оксид состава RO3. Какова электронная конфигурация внешнего энергетического уровня атома этого элемента? |
Ответ | Необходимо определить к какой группе Периодической системы относится элемент, образующий высший оксид состава RO3. Поскольку в оксидах кислород проявляет постоянную валентность равную II, то высшая валентность элемента в оксиде R VI O II 3 равна VI. |
Отсюда следует, что это элемент VIA группы, в его атоме 6 валентных электронов. Этому требованию соответствует элемент с электронной формулой ns 2 np 4 .
Задание | Исходя из строения внешнего уровня атома меди, объясните, какие значения степени окисления могут быть характерны для меди. |
Решение | Напишем электронную формулу атома меди в основном состоянии, учитывая, что для меди характерен проскок электрона с 4s –подуровня на 3d-подуровень, который объясняется тем, что завершенный подуровень энергетически более выгоден: |
1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 1 .
4s-электрон является валентным.
В возбужденном состоянии один из d-электронов возвращается на 4-й уровень, таким образом там оказывается 2 валентных электрона.
Итак, для меди характерны два значения степени окисления: +1 и +2.
Источник
Магний, свойства атома, химические и физические свойства
Магний, свойства атома, химические и физические свойства.
24,304-24,307 1s 2 2s 2 2p 6 3s 2
Магний — элемент периодической системы химических элементов Д. И. Менделеева с атомным номером 12. Расположен во 2-й группе (по старой классификации — главной подгруппе второй группы), третьем периоде периодической системы.
Физические свойства магния
Атом и молекула магния. Формула магния. Строение магния:
Магний (лат. Magnesium, от др.-греч. βαρύς – «тяжёлый») – химический элемент периодической системы химических элементов Д. И. Менделеева с обозначением Mg и атомным номером 12. Расположен в 2-й группе (по старой классификации — главной подгруппе второй группы), третьем периоде периодической системы.
Магний – щёлочноземельный металл. Относится к группе цветных металлов.
Магний обозначается символом Mg.
Как простое вещество магний при нормальных условиях представляет собой лёгкий, ковкий металл серебристо-белого цвета.
Молекула магния одноатомна.
Химическая формула магния Mg.
Электронная конфигурация атома магния 1s 2 2s 2 2p 6 3s 2 . Потенциал ионизации (первый электрон) атома магния равен 737,75 кДж/моль (7,646236(4) эВ).
Строение атома магния. Атом магния состоит из положительно заряженного ядра (+12), вокруг которого по трем атомным оболочкам движутся 12 электронов. При этом 10 электронов находятся на внутреннем уровне, а 2 электрона – на внешнем. Поскольку магний расположен в третьем периоде, оболочек всего три. Первая – внутренняя оболочка представлена s-орбиталью. Вторая – внутренняя оболочка представлена s- и р-орбиталями. Третья – внешняя оболочка представлена s-орбиталью. На внешнем энергетическом уровне атома магния – на 3s-орбитали находится два спаренных электрона. В свою очередь ядро атома магния состоит из 12 протонов и 12 нейтронов. Магний относится к элементам s-семейства.
Радиус атома магния (вычисленный) составляет 145 пм.
Атомная масса атома магния составляет 24,304-24,307 а. е. м.
Изотопы и модификации магния:
Свойства магния (таблица): температура, плотность, давление и пр.:
100 | Общие сведения | |
101 | Название | Магний |
102 | Прежнее название | |
103 | Латинское название | Magnesium |
104 | Английское название | Magnesium |
105 | Символ | Mg |
106 | Атомный номер (номер в таблице) | 12 |
107 | Тип | Металл |
108 | Группа | Цветной, щёлочноземельный металл |
109 | Открыт | Джозеф Блэк, Шотландия, 1755 г., Хемфри Дэви, Великобритания, 1808 г., Антуан Александр Брутус Бюсси, Франция, 1829 г. |
110 | Год открытия | 1755 г. |
111 | Внешний вид и пр. | Лёгкий, ковкий, серебристо-белый металл |
112 | Происхождение | Природный материал |
113 | Модификации | |
114 | Аллотропные модификации | |
115 | Температура и иные условия перехода аллотропных модификаций друг в друга | |
116 | Конденсат Бозе-Эйнштейна | |
117 | Двумерные материалы | |
118 | Содержание в атмосфере и воздухе (по массе) | 0 % |
119 | Содержание в земной коре (по массе) | 2,9 % |
120 | Содержание в морях и океанах (по массе) | 0,13 % |
121 | Содержание во Вселенной и космосе (по массе) | 0,06 % |
122 | Содержание в Солнце (по массе) | 0,07 % |
123 | Содержание в метеоритах (по массе) | 12 % |
124 | Содержание в организме человека (по массе) | 0,027 % |
200 | Свойства атома | |
201 | Атомная масса (молярная масса)* | 24,304-24,307 а. е. м. (г/моль) |
202 | Электронная конфигурация | 1s 2 2s 2 2p 6 3s 2 |
203 | Электронная оболочка | K2 L8 M2 N0 O0 P0 Q0 R0 |
204 | Радиус атома (вычисленный) | 145 пм |
205 | Эмпирический радиус атома* | 150 пм |
206 | Ковалентный радиус* | 141 пм |
207 | Радиус иона (кристаллический) | Mg 2+ (в скобках указано координационное число – характеристика, которая определяет число ближайших частиц (ионов или атомов) в молекуле или кристалле) |
208 | Радиус Ван-дер-Ваальса | 173 пм |
209 | Электроны, Протоны, Нейтроны | 12 электронов, 12 протонов, 12 нейтронов |
210 | Семейство (блок) | элемент s-семейства |
211 | Период в периодической таблице | 3 |
212 | Группа в периодической таблице | 2-ая группа (по старой классификации – главная подгруппа 2-ой группы) |
213 | Эмиссионный спектр излучения | |
300 | Химические свойства | |
301 | Степени окисления | 0, +2 |
302 | Валентность | II |
303 | Электроотрицательность | 1,31 (шкала Полинга) |
304 | Энергия ионизации (первый электрон) | 737,75 кДж/моль (7,646236(4) эВ) |
305 | Электродный потенциал | Mg 2+ + 2e – → Mg, E o = -2,363 В |
306 | Энергия сродства атома к электрону | -40(19) кДж/моль (-0,4(2) эВ) |
400 | Физические свойства | |
401 | Плотность | 1,738 г/см 3 (при 20 °C и иных стандартных условиях , состояние вещества – твердое тело), 1,584 г/см 3 (при температуре плавления 650 °C и иных стандартных условиях , состояние вещества – жидкость), 1,57 г/см 3 (при 651 °C и иных стандартных условиях , состояние вещества –жидкость) |
402 | Температура плавления | 650 °C (923 K, 1202 °F) |
403 | Температура кипения | 1090 °C (1363 K, 1994 °F) |
404 | Температура сублимации | |
405 | Температура разложения | |
406 | Температура самовоспламенения смеси газа с воздухом | |
407 | Удельная теплота плавления (энтальпия плавления ΔHпл)* | 8,48 кДж/моль |
408 | Удельная теплота испарения (энтальпия кипения ΔHкип)* | 128 кДж/моль |
409 | Удельная теплоемкость при постоянном давлении | 0,983 Дж/г·K (при 25 °C), 1,6 Дж/г·K (при 100 °C), 1,31 Дж/г·K (при 650 °C) |
410 | Молярная теплоёмкость* | 24,869 Дж/(K·моль) |
411 | Молярный объём | 13,984 см³/моль |
412 | Теплопроводность | 156 Вт/(м·К) (при стандартных условиях ), 156 Вт/(м·К) (при 300 K) |
500 | Кристаллическая решётка | |
511 | Кристаллическая решётка #1 | |
512 | Структура решётки | Гексагональная плотноупакованная |
513 | Параметры решётки | a = 3,2029 Å, c = 5,2000 Å |
514 | Отношение c/a | 1,624 |
515 | Температура Дебая | 318 К |
516 | Название пространственной группы симметрии | P63/mmc |
517 | Номер пространственной группы симметрии | 194 |
900 | Дополнительные сведения | |
901 | Номер CAS | 7439-95-4 |
201* Указан диапазон значений атомной массы в связи с различной распространённостью изотопов данного элемента в природе.
205* Эмпирический радиус атома магния согласно [1] составляет 160 пм.
206* Ковалентный радиус магния согласно [1] и [3] составляет 141±7 пм и 136 пм соответственно.
407* Удельная теплота плавления (энтальпия плавления ΔHпл) магния согласно [3] составляет 9,20 кДж/моль.
408* Удельная теплота испарения (энтальпия кипения ΔHкип) магния согласно [3] составляет 131,8 кДж/моль.
410* Молярная теплоемкость магния согласно [3] составляет 24,90 Дж/(K·моль).
Физические свойства магния:
Химические свойства магния. Взаимодействие магния. Реакции с магнием:
1. Реакция взаимодействия магния и водорода:
В результате реакции образуются гидрид магния. Реакция протекает при избыточном давлении.
2. Реакция окисления кислородом магния:
2Mg + O2 → 2MgO (t = 600-650 °C).
В результате реакции образуется оксид магния . В ходе реакции сгорает магний на воздухе.
3. Реакция взаимодействия магния и хлора:
В результате реакции образуются хлорид магния.
4. Реакция взаимодействия магния и кремния:
В результате реакции образуются силицид магния. Реакция протекает при сплавлении реакционной смеси.
5. Реакция взаимодействия магния и азота:
В результате реакции образуются нитрид магния.
6. Реакция взаимодействия магния и фосфора:
В результате реакции образуются фосфид магния.
7. Реакция взаимодействия бора и магния:
В результате реакции образуются борид магния.
8. Реакция взаимодействия висмута и магния:
В результате реакции образуются висмутид магния.
9. Реакция взаимодействия сурьмы и магния:
В результате реакции образуются стибид магния.
10. Реакция взаимодействия магния и воды:
В результате реакции образуются гидроксид магния и водород. В ходе реакции используется горячая вода.
11. Реакция взаимодействия оксида бериллия и магния:
BeO + Mg → MgO + Be (t = 700-800 °C).
В результате реакции образуются оксид магния и бериллий.
12. Реакция взаимодействия оксида азота (I) и магния:
В результате реакции образуются азот и оксид магния.
13. Реакция взаимодействия оксида азота (II) и магния:
2NO + 2Mg → N2 + 2MgO (t ≈ 500 °C).
В результате реакции образуются азот и оксид магния.
14. Реакция взаимодействия магния и тетраоксида диазота:
В результате реакции образуются нитрат магния и оксид азота.
15. Реакция взаимодействия оксида лития и магния:
Li2O + Mg → 2Li + MgO (t = 800 °C).
В результате реакции образуются литий и оксид магния.
16. Реакция взаимодействия оксида лития , магния и водорода:
Li2O + Mg + H2 → 2LiH + MgO (t = 450-500 °C).
В результате реакции образуются гидрид лития и оксид магния.
17. Реакция взаимодействия оксида бора и магния:
В результате реакции образуются в первом случае – борид магния и оксид магния, во втором – бор и оксид магния.
Вторая реакция представляет собой метод получения аморфного бора. Полученный бор – бор Муассана, чистота 95-98 %.
18. Реакция взаимодействия оксида углерода и магния:
CO2 + 2Mg → 2MgO + C (t ≈ 500 °C).
В результате реакции образуются оксид магния и углерод. В ходе реакции происходит сжигание магния в среде углекислого газа.
19. Реакция взаимодействия оксида кремния и магния:
SiO2 + 2Mg → Si + 2MgO (t ≈ 1000 °C),
SiO2 + 4Mg → Mg2Si + 2MgO (t = 800 °C).
В результате реакции образуются в первом случае – кремний и оксид магния. Первая реакция представляет собой лабораторный метод получения кремния осуществляют следующем образом: смесь сухого песка и измельченного магния зажигают магниевой лентой.
Во втором случае в результате реакции образуются силицид магния и оксид магния. Реакция протекает при температуре не более 800°C в атмосфере водорода.
20. Реакция взаимодействия оксида кальция , водорода и магния:
CaO + H2 + Mg → CaH2 + MgO (t = 800-900 °C).
В результате реакции образуются гидрид кальция и оксид магния.
21. Реакция взаимодействия магния и бромоводорода:
В результате реакции образуются бромид магния и водород. В ходе реакции используется разбавленный раствор бромоводорода.
22. Реакция взаимодействия магния и фтороводорода:
В результате реакции образуются фторид магния и водород. В ходе реакции используется разбавленный раствор фтороводорода.
23. Реакция взаимодействия магния и сероводорода:
В результате реакции образуются сульфид магния и водород.
24. Реакция взаимодействия магния и азотной кислоты:
В результате реакции образуются в первом случае – нитрат магния, азот и вода, во втором – нитрат магния, оксид азота (I) и вода, в третьем – нитрат магния, оксид азота (I), оксид азота (II) и вода. В ходе реакции в первом и втором случае применяется разбавленная азотная кислота, в третьем – 30%-й раствор азотной кислоты.
25. Реакция взаимодействия магния и ортофосфорной кислоты:
В результате реакции образуются ортофосфат магния и водород. При этом в ходе реакции используется разбавленный раствор ортофосфорной кислоты.
Аналогичные реакции проходят и с другими кислотами.
26. Реакция взаимодействия магния и аммиака:
В результате реакции образуются нитрид магния и водород.
27. Реакция взаимодействия фторида бериллия и магния:
BeF2 + Mg → MgF2 + Be (t = 700-750 °C).
В результате реакции образуются фторид магния и бериллий.
28. Реакция взаимодействия фторида кремния и магния:
SiF4 + 2Mg → Si + 2MgF2 (t = 500-600 °C).
В результате реакции образуются кремний и фторид магния. В ходе реакции применяется примесь – силицид магния Mg2Si.
29. Реакция взаимодействия карбоната лития и магния:
В результате реакции образуются литий, оксид магния и оксид углерода .
30. Реакция взаимодействия магния и карбоната рубидия:
В результате реакции образуются рубидий, оксид магния и углерод . Этим методом добывают рубидий.
31. Реакция взаимодействия карбида кремния и магния:
2SiC + 5Mg → 2Mg2Si + MgC2 (t ≈ 700°C).
В результате реакции образуются силицида магния и карбида магния.
32. Реакция взаимодействия хлорида олова и магния:
SnCl2 + Mg → MgCl2 + Sn (t = 200-300 °C).
В результате реакции образуются хлорид магния и олово.
33. Реакция взаимодействия хлорида ванадия и магния:
В результате реакции образуются ванадий и хлорид магния.
34. Реакция взаимодействия хлорида железа и магния:
2FeCl3 + 3Mg → 2Fe + 3MgCl2 (t = 300-400 °C).
В результате реакции образуются железо и хлорид магния.
35. Реакция взаимодействия хлорида титана и магния:
TiCl4 + 2Mg → Ti + 2MgCl2 (t = 800-850 °C).
В результате реакции образуются титан и хлорид магния. В ходе реакции используется магний в виде расплава. Реакцию проводят при температуре в отсутствие воздуха в атмосфере аргона.
36. Реакция взаимодействия хлорида гафния и магния:
HfCl4 + 2Mg → Hf + 2MgCl2 (t = 650-700 °C).
В результате реакции образуются гафний и хлорид магния.
37. Реакция взаимодействия хлорида циркония и магния:
ZrCl4 + 2Mg → Zr + 2MgCl2 (t ≈ 700 °C).
В результате реакции образуются цирконий и хлорид магния.
38. Реакция взаимодействия хлорида тантала и магния:
2TaCl5 + 5Mg → 2Ta + 5MgCl2 (t ≈ 750°C).
В результате реакции образуются тантал и хлорид магния.
39. Реакция взаимодействия хлорида ванадия, оксида углерода и магния:
В результате реакции образуются гексакарбонилванадат магния и хлорид магния. Реакция протекает в пиридине при температуре около 135°C и избыточном давлении.
40. Реакция взаимодействия сульфата бериллия, воды и магния:
В результате реакции образуются гидроксосульфат бериллия, сульфат магния и водород.
41. Реакция взаимодействия сульфида титана и магния:
TiS2 + 2Mg → 2MgS + Ti (t ≈ 1000 °C).
В результате реакции образуются сульфид магния и титан. Реакция протекает в атмосфере аргона.
42. Реакция взаимодействия тетрабората натрия и магния:
В результате реакции образуются аморфный бор, оксид магния и оксид натрия .
43. Реакция взаимодействия магния и пентана :
В результате реакции образуются карбид магния и водород. Реакция протекает при нагревании до температуры не более 700°C.
44. Реакция взаимодействия магния и циклопентадиена:
В результате реакции образуются циклопентадиенил магния и водород.
45. Реакция взаимодействия магния и ацетилена:
В результате реакции образуются карбид магния и водород.
Источник