Что такое валентность металлов

Валентность и степень окисления

Валентность

Валентность (лат. valere — иметь значение) — мера «соединительной способности» химического элемента, равная числу индивидуальных химических связей, которые может образовать один атом.

Определяют валентность по числу связей, которые один атом образует с другими. Для примера рассмотрим две молекулы

Для определения валентности нужно хорошо представлять графические формулы веществ. В этой статье вы увидите множество формул. Сообщаю вам также о химических элементах с постоянной валентностью, знать которые весьма полезно.

В электронной теории считается, что валентность связи определяется числом неспаренных (валентных) электронов в основном или возбужденном состоянии. Мы касались с вами темы валентных электронов и возбужденного состояния атома. На примере фосфора объединим эти две темы для полного понимания.

Подавляющее большинство химических элементов обладает непостоянным значением валентности. Переменная валентность характерна для меди, железа, фосфора, хрома, серы.

Ниже вы увидите элементы с переменной валентностью и их соединения. Заметьте, определить их непостоянную валентность нам помогают другие элементы — с постоянной валентностью.

Запомните, что у некоторых простых веществ валентность принимает значения: III — у азота, II — кислорода. Подведем итог полученным знаниям, написав графические формулы азота, кислорода, углекислого и угарного газов, карбоната натрия, фосфата лития, сульфата железа (II) и ацетата калия.

Как вы заметили, валентности обозначаются римскими цифрами: I, II, III и т.д. На представленных формулах валентности веществ равны:

  • N — III
  • O — II
  • H, Na, K, Li — I
  • S — VI
  • C — II (в угарном газе CO), IV (в углекислом газе CO2 и карбонате натрия Na2CO3
  • Fe — II
Степень окисления

Степенью окисления (СО) называют условный показатель, который характеризует заряд атома в соединении и его поведение в ОВР (окислительно-восстановительной реакции). В простых веществах СО всегда равна нулю, в сложных — ее определяют исходя из постоянных степеней окисления у некоторых элементов.

Численно степень окисления равна условному заряду, который можно приписать атому, руководствуясь предположением, что все электроны, образующие связи, перешли к более электроотрицательному элементу.

Определяя степень окисления, одним элементам мы приписываем условный заряд «+», а другим «-«. Это связано с электроотрицательностью — способностью атома притягивать к себе электроны. Знак «+» означает недостаток электронов, а «-» — их избыток. Повторюсь, СО — условное понятие.

Сумма всех степеней окисления в молекуле равна нулю — это важно помнить для самопроверки.

Зная изменения электроотрицательности в периодах и группах периодической таблицы Д.И. Менделеева, можно сделать вывод о том какой элемент принимает «+», а какой минус. Помогают в этом вопросе и элементы с постоянной степенью окисления.

Кто более электроотрицательный, тот сильнее притягивает к себе электроны и «уходит в минус». Кто отдает свои электроны и испытывает их недостаток — получает знак «+».

Самостоятельно определите степени окисления атомов в следующих веществах: RbOH, NaCl, BaO, NaClO3, SO2Cl2, KMnO4, Li2SO3, O2, NaH2PO4. Ниже вы найдете решение этой задачи.

Сравнивайте значение электроотрицательности по таблице Менделеева, и, конечно, пользуйтесь интуицией 🙂 Однако по мере изучения химии, точное знание степеней окисления должно заменить даже самую развитую интуицию 😉

Особо хочу выделить тему ионов. Ион — атом, или группа атомов, которые за счет потери или приобретения одного или нескольких электронов приобрел(и) положительный или отрицательный заряд.

Читайте также:  Металлоторг ру система торговли металлами

Определяя СО атомов в ионе, не следует стремиться привести общий заряд иона к «0», как в молекуле. Ионы даны в таблице растворимости, они имеют разные заряды — к такому заряду и нужно в сумме привести ион. Объясню на примере.

© Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Блиц-опрос по теме Валентность и степень окисления

Источник

Валентность

Валентность — это способность атомов химических элементов образовывать определенное число химических связей с атомами других химических элементов.

Ковалентные связи могут образовываться по обменному и донорно-акцепторному механизмам .

Обменный механизм образования ковалентной связи — в образовании связи участвуют одноэлектронные атомные орбитали, т.е. каждый из атомов предоставляет по одному неспаренному электрону.

Донорно-акцепторный механизм — образование связи происходит за счет электронной пары одного из атомов (атом-донор) и вакантной орбитали другого атома (атом-акцептор):

Таким образом, атомы могут образовывать химическую связь не только за счет неспаренных электронов на внешнем энергетическом уровне, но и за счет неподеленных электронных пар, или свободных орбиталей на этом уровне.

Большинство элементов характеризуются высшей, низшей или промежуточной валентностью в соединениях.

Для большинства элементов высшая валентность, как правило, равна номеру группы, низшая валентность определяется по формуле: 8 — № группы. Промежуточная валентность – это число между низшей и высшей валентностями.

Например , высшая валентность хлора равна VII, низшая валентность хлора равна I, промежуточные валентности — III, V.

Обратите внимание! Степень окисления и валентность — это не одно и то же. Хотя иногда степени окисления совпадают с валентностями. Стпень окисления — это условный заряд атома, он может быть и положительным и отрицательным. А вот образовать отрицательное число связей атом никак не может.

Например , валентность (число связей) атома кислорода в молекуле O2 равна II, а вот степень окисления атома кислорода равна 0.

Большинство элементов проявляют переменную валентность в соединениях, но некоторые элементы проявляют постоянную валентность . Их необходимо запомнить:

Элемент Валентность
Фтор F I
Кислород О II
Металлы IA группы (Li, Na, K, Rb, Cs, Fr) I
Металлы IIA группы (Be, Mg, Ca, Sr, Ba, Ra) II
Алюминий Al III

Как определить валентность атома в соединении?

Рассмотрим валентные возможности атомов второго периода. В силу некоторых ограничений они не соответствуют традиционным «школьным» представлениям.

Итак, не внешнем энергетическом уровне лития 1 неспаренный электрон: 1s 2 2s 1 .

+3Li 1s 2 2s 1

Следовательно, литий может образовывать одну связь и валентность лития I.

У бериллия на внешнем энергетическом уровне 2 электрона: 1s 2 2s 2 .

+4Be 1s 2 2s 2

В возбужденном состоянии возможен переход электронов внешнего энергетического уровня с одного подуровня на другой: 1s 2 2s 1 2p 1 .

+4Be * 1s 2 2s 1 2p 1

Таким образом, на внешнем э нергетическом уровне бериллия в возбужденном энергетическом состоянии есть 2 неспаренных электрона и две вакантные электронные орбитали. Следовательно, бериллий может образовать 2 связи по обменному механизму, т.е. валентность бериллия равна номеру группы и равна II.

Читайте также:  Какие металлы реагируют с водой при обычных условиях напишите уравнения реакций

Например , в хлориде бериллия валентность бериллия равна II:

Электронная конфигурация атома бора в основном состоянии +5B 1s 2 2s 2 2p 1 :

+5B 1s 2 2s 2 2p 1

В возбужденном состоянии: +5B * 1s 2 2s 1 2p 2 .

+5B 1s 2 2s 1 2p 2

Следовательно, бор может образовывать 3 связи по обменному механизму (за счет неспаренных электронов). Валентность бора в соединениях — III.

Например , в трихлориде бора BCl3 валентность бора равна III.

Однако, при этом у бора остается еще одна вакантная электронная орбиталь. Следовательно, бор может выступать, как акцептор электронной пары.

У атома углерода в возбужденном состоянии на внешнем энергетическом уровне 4 неспаренных электрона: 1s 2 2s 1 2p 3 , следовательно, максимальная валентность углерода равна IV (как правило, в органических соединениях у углерода именно такая валентность). В основном состоянии у атома углерода 2 неспаренных электрона, и валентность II. Однако посмотрим внимательно: у атома углерода в основном состоянии не внешнем энергетическом уровне есть незанятая (вакантная) электронная орбиталь. Следовательно, он может образовывать еще одну связь — по донорно-акцепторному механизму. Таким образом, в некоторых случаях углерод может образовывать три связи ( например , молекула угарного газа CO, строение которой мы рассмотрим позднее).

Валентные возможности атома азота определяются также строением его внешнего энергетического уровня. В основном состоянии электронная формула азота: +7N 1s 2 2s 2 2p 3 .

За счет 3 неспаренных электронов на p-подуровне азот может образовывать 3 связи по обменному механизму (валентность III), и еще 1 связь азот может образовать по донорно-акцепторному механизму за счет неподеленной электронной пары. Таким образом, максимальная валентность азота в соединениях — IV. На примере азота можно убедиться, что высшая валентность атома и максимальная степень окисления — разные величины, которые далеко не всегда совпадают. Возбужденное состояние с 5 неспаренными электронами для атома азота не реализуется, т.к. на 2 энергетическом уровне есть только s и p орбитали.

Источник

Валентность — это просто

От слова «валентность» многие ученики, изучающие химию в 8 классе, впадают в спячку. В школьном курсе химии этому вопросу уделяется не так много времени, хотя валентность – одно их базовых понятий в этой науке. Очень важно досконально разобраться, что такое валентность , как она определяется и какое значение она имеет. Поняв это и научившись составлять формулы и определять валентность элементов, вы существенно облегчите себе изучение химии. Приступаем.

Что же такое валентность? Ничего страшного в этом явлении нет.

Валентность – это способность атома образовывать химические связи.

Вы же знаете, что бывают вещества простые, состоящие из атомов одного вида, и сложные, состоящие из атомов разных элементов? Так вот чтобы атомы как-то соединялись между собой, они должны связываться, соединяться. А соединяются они посредством химической связи . Одни атомы могут образовать только одну связь, на большее у них способностей не хватает. Другие атомы куда мощнее, они могут и несколько связей образовать, чтобы покрепче держаться за окружение. Вот представьте, что у вас только один друг. Надёжный такой, верный друг, который с вами в огонь и в воду. Вы с ним всегда в паре ходите. Это значит, что у вас валентность I (внимание! Читается это не «первая валентность», а «валентность один»!). А теперь представьте, что у вас три верных друга. Вы всегда за них держитесь и твёрдо уверены, что они при вас ежеминутно. Значит, у вас валентность III. В первом случае вы образовали одну крепкую связь, а во втором – три. Вот и вся валентность.

Читайте также:  На какие две группы условно делятся металлы

Любой учитель и репетитор по химии скажет вам, что

есть элементы с валентностью постоянной и элементы, у которых валентность может быть разной.

И, как ни странно, они будут правы. Если мы возвратимся к примерам с друзьями, то выглядеть это будет так. Кто-то всю жизнь дружит с одним человеком (у него всегда валентность I), кто-то всю жизнь дружит с тремя (валентность III). А кто-то иногда дружит с одним, иногда с тремя, а иногда — вообще с пятью! Встречали таких в жизни? Вот и среди химических элементов есть такие, которые иногда имеют валентность I, иногда валентность III или даже V. Должна вас немного расстроить: элементы с постоянной валентностью придётся зазубрить . Также навсегда запоминаем, что валентность обозначается римскими цифрами (так повелось, просто смиритесь с этим. Указывается валентность НАД элементом в формуле). Итак, наизусть нужно выучить, что:

· Металлы основной подгруппы первой группы всегда имеют валентность I. Это элементы Li, Na, K, Rb, Cs, Fr.

· Металлы основной подгруппы второй группы всегда имеют валентность II. Это элементы Be, Mg, Ca, Sr, Ba, Ra.

· Водород всегда имеет валентность I.

· Кислород всегда имеет валентность II.

· Элементы Al и В (основная группа третьей подгруппы) всегда имеют валентность III.

· Элементы основной подгруппы седьмой группы чаще (но не всегда!) имеют валентность I. Это элементы F, Cl, Br, I, At. Кстати, эти элементы носят название «галогены» и будьте настороже: галогены любят подшутить и иногда имеют другую валентность. В школьной химии обычно они представляются как одновалентные, но это кокетство, потому что галогены – шалуны.

Теперь перейдём к элементам с валентностью непостоянной. Это хулиганы, которые любят загадывать загадки и разыгрывать начинающих. Особое коварство они проявляют во время ЕГЭ по химии и даже ОГЭ по химии, запутывая бедных школьников. Итак,

запомните этих головорезов с непостоянной валентностью в лицо:

C (углерод), N (азот), P (фосфор), S (сера), Сr (хром), Fe (железо), Cu (медь).

Конечно же, в таблице Менделеева элементов намного больше. Но в школьном учебнике по химии используется менее половины из них. Дело в том, что в четвёртом периоде таблицы появляются так называемые d-элементы со сложным строением и хитрыми свойствами, о которых школьникам рассказывать не полагается. Да и очень хорошо, нечего голову забивать.

Надеюсь, с понятием «валентность» вы всё-таки разобрались. В следующий раз мы попрактикуемся в определении валентности элементов, если есть формула, и правильном составлении формул веществ, если знаем валентность.

Пишите, пожалуйста, в комментариях, что осталось непонятным, и я обязательно дам дополнительные пояснения. Жалуйтесь на сложности в изучении школьного курса и говорите, что вас испугало в учебнике химии. И тогда следующая статья будет рассказывать именно об этой проблеме.

Источник

Поделиться с друзьями
Металл
Adblock
detector