Что такое электронная структура металлов

Строение атомов металлов и их особенности

Общие сведения о строении металлов

Металлы можно охарактеризовать при помощи нескольких свойств, которые будут общими для всех элементов. К таким характеристикам следует отнести высокую электрическую проводимость и теплопроводность, пластичность, благодаря которой металлы можно подвергать ковке, прокатке, штамповке или вытягиванию в проволоку, металлический блеск и непрозрачность.

В зависимости от температуры кипения все металлы подразделяют на тугоплавкие (Tкип> 1000 o С) и легкоплавкие (Tкип o С). Примером тугоплавких металлов может быть – Au, Cu, Ni, W, легкоплавких – Hg, K, Al, Zn.

Электронное строение металлов и их особенности

Атомы металлов, также как, и неметаллов состоят из положительно заряженного ядра внутри которого находятся протоны и нейтроны, а по орбитам вокруг него движутся электроны. Однако, по сравнению с неметаллами, атомные радиусы металлов намного больше. Это связано с тем, что валентные электроны атомов металлов (электроны внешнего энергетического уровня) расположены на значительном удалении от ядра и, как следствие, связаны с ним слабее. По этой причине металлы характеризуются низкими потенциалами ионизации и легко отдают электроны (являются восстановителями в ОВР) при образовании химической связи.

Все металлы за исключением ртути представляют собой твердые вещества с атомной кристаллической решеткой. Рассмотрим строение металлов в кристаллическом состоянии. В атомах металлов имеются «свободные» электроны (электронный газ), которые могут перемещаться по кристаллу даже под действием слабых электрических полей, что обусловливает высокую электропроводимость металлов.

Среди металлов присутствуют s-, p-, d- и f-элементы. Так, s- элементы – это металлы I и II групп Периодической системы (ns 1 , ns 2 ), р- элементы – металлы, расположенные в группах III – VI (ns 2 np 1-4 ). Металлы d-элементы имеют большее число валентных электронов по сравнению с металлами s- и p-элементами. Общая электронная конфигурация валентных электронов металлов d-элементов – (n-1)d 1-10 ns 2 . Начиная с 6 периода появляются металлы f-элементы, которые объединены в семейства по 14 элементов (за счет сходных химических свойств) и носят особые названия лантаноидов и актиноидов. Общая электронная конфигурация валентных электронов металлов f-элементов – (n-2)f 1-14 (n-1)d 0-1 ns 2 .

Примеры решения задач

Задание При взаимодействии 6,0 г металла с водой выделилось 3,36 л водорода (н.у.). Определите этот металл, если он в своих соединениях двухвалентен.
Решение Запишем уравнение реакции растворения металла в воде. Поскольку металл двухвалентен, его реакция с водой будет описываться уравнением следующего вида:

Согласно уравнению реакции:

N (Ме) =n (Н2) = 3,36/22,4 = 0,15 моль.

Найдем относительную атомную массу металла:

Ar(Ме) = m / n= 6,0/0,15 = 40 г/моль

Следовательно, этот металл — кальций.

Ответ Кальций
Задание При действии на смесь меди и железа массой 20 г избытком соляной кислоты выделилось 5,6 л газа (н.у.). Определить массовые доли металлов в смеси.
Решение Известно, что медь не растворяется в соляной кислоте, поскольку стоит в ряду активности металлов после водорода, т.е. выделение водорода происходит только в результате взаимодействия хлороводородной кислоты с железом.

Запишем уравнение реакции:

Найдем количество вещества водорода:

Согласно уравнению реакции n(H2) : n(Fe) = 1:1, т.е.n(H2) = n(Fe) = 0,25 моль. Тогда масса железа будет равна (молярная масса – 56 г/моль):

m(Fe)=0,25 ×c 56 = 14 г.

Рассчитаем массовые доли металлов в смеси:

ωFe = 14 / 20 × 100% = 0,7 × 100% = 70%.

Источник

Большая Энциклопедия Нефти и Газа

Электронная структура — металл

Электронная структура металлов и полупроводников имеет существенное значение для их каталитической активности. Если металлический контакт содержит высокодисперсный металл, то его электронная структура может существенно отличаться по сравнению с компактным металлом, В то же — время определение электронной структуры металла является более трудной задачей, чем изучение его кристаллической структуры рентгенографическим или электронографическим методом. Если металл пара — или ферромагнитен, как в случае переходных металлов, которые очень часто отличаются большой каталитической активностью, то для цели пригоден магнитный метод. [1]

Электронная структура металлов и их каталитическая акт. [2]

Электронная структура металлов зависит главным образом только от их химической природы. Структура полупроводников зависит также и от других факторов: от наличия акцепторных или донорных примесей в объеме, от характера поверхностных состояний ( который, в свою очередь, во многом определяется способом предварительной обработки поверхности), от воздействия светового излучения и др. Таким образом, электронная структура полупроводников определенного химического состава может колебаться в широких пределах. Этим объясняется, в частности значительный разброс экспериментальных данных у разных авторов. Для получения воспроизводимых результатов необходимо четко фиксировать все факторы, которые могут влиять на состояние полупроводника. [3]

Электронная структура металлов определяет не только химические, но и многие их физические свойства. [4]

Сопоставление электронной структуры металлов с их каталитической активностью показывает, что каталитическая активность возрастает в начале периода с ростом числа электронов и наиболее резко выражена у металлов с суммарным числом s — и ( — электронов ( число электронов сверх оболочки предшествующего инертного газа), превышающим число электронов, участвующих в металлической связи. Сочетание прочности связи, обеспечивающей устойчивость фазы металла, с наличием несвязанных электронов на атомных орбитах открывает, по-видимому, широкие возможности поверхностного взаимодействия, существенного для протекания каталитических процессов. [5]

Следует различать два основных типа электронной структуры металлов . Первый представлен металлами с простой валентной оболочкой, такими, как натрий или серебро ( см. рис. 30); все электроны валентной зоны берутся в этом случае из одной и той же атомной электронной оболочки. [6]

Устойчивость интерметаллических фаз зависит от электронной структуры металлов и связана с электронной концентрацией el a — отношением числа валентных электронов к числу атомов в соединении или элементарной ячейке. По мере увеличения е / а и достижения определенного значения образуется новая фаза с другой структурой и устойчивая в данном интервале электронных концентраций. Юм Ро-зери установил, что такие фазы возникают при е / а 1 5, 1 62 и 1 75, что подтверждено на большом числе двойных систем. Для фаз Лавеса идеальнее отношение размеров атомов равно 1 225, а структура зависит от е / а. [7]

Устойчивость интерметаллических фаз зависит от электронной структуры металлов и связана с электронной концентрацией el a — отношением числа валентных электронов к числу атомов в соединении или элементарной ячейке. По мере увеличения el а и достижения определенного значения образуется новая фаза с другой структурой и устойчивая в данном интервале электронных концентраций. Юм Ро-зери установил, что такие фазы возникают при е / а 1 5, 1 62 и 1 75, что подтверждено на большом числе двойных систем. Для фаз Лавеса идеальное отношение размеров атомов равно 1 225, а структура зависит от е / а. [8]

Следует учитывать, конечно, электронную структуру металла в каталитически активном комплексе, а не распределение электронов в одном только ионе, как показано выше. Если известно, что система обладает активностью, то можно написать формулы комплексов металлов с возможными электронными структурами, которые будут находиться в согласии с экспериментальными наблюдениями. [9]

Руководствуясь этой классификацией, рассмотрим сначала электронную структуру металлов и сплавов, а также ее связь с каталитической активностью. [10]

Существенный интерес представляет зависимость удельной каталитической активности от электронной структуры металлов . Как показывает кривая 1 ( см. рис. 4), в пределах четвертого периода системы Д. И. Менделеева удельная каталитическая активность в отношении реакции обмена возрастает с увеличением порядкового номера, достигает максимума у никеля, затем очень резко снижается при переходе к меди. [11]

Поскольку метод справедлив при предположении отсутствия заметного влияния примесей на электронную структуру металла , то для получения достаточно надежных данных желательно использование достаточного количества экспериментальных данных для сплавов. [12]

А — постоянная; F ( Е) — величина, определяемая электронной структурой металла ; Т — абсолютная температура. [13]

Однако при этом не исключается влияние подложки, действие которой учитывается по изменению тонкой электронной структуры хелатно связанного металла . Полученные результаты свидетельствуют о том, что полимеры с алифатическими радикалами имеют пониженную ( по сравнению с ароматическими радикалами) интенсивность переходов на 4р — уровни и указывают на изменение электронного состояния хелатно связанного металла. [14]

Изменяя ориентацию магнитного поля относительно кристаллографических осей, можно, очевидно, получить полезнейшую информацию об электронной структуре металла , причем различные осцилляционные эффекты дают количественные характеристики разных параметров поверхности Ферми. Ферми с поверхностью зоны Бриллюэна. [15]

Источник

Занятие 1. Электронное строение и классификация металлов

КОНТРОЛЬ КАЧЕСТВА ОСТАТОЧНЫХ ЗНАНИЙ

по

МАТЕРИАЛОВЕДЕНИЮ

и

Технологии Конструкционных Материалов

для студентов по направлению

«Металлургия»

Электронное строение и классификация металлов

2. Кристаллическое строение металлови дефекты кристаллических структур

Теория сплавов(Кристаллизация металлов. Виды сплавов. Диаграммы состояния.)

Механические свойства, деформация и рекристаллизация металлов

Железоуглеродистые сплавы (структурный и фазовый составы)

Теория термообработки. Термическая и химико-термическая обработка сталей

Классификация и маркировка сталей и сплавов

Цветные металлы и сплавы

Металлы и сплавы с особыми свойствами и электротехнические материалы

Инструментальные материалы

Неметаллические и композиционные материалы

Доцент А.М. Апасов

Занятие 1. Электронное строение и классификация металлов

Металлы, или вещества, находящиеся в металлическом состоянии, обладают электронным строением, характеризующимся наличием незаполненных подуровней в валентной зоне. Валентные электроны не связаны с определенными атомами, а принадлежат всему металлическому телу, образуя электронный газ, окружающий каркас из положительно заряженных ионов.

Металлическая связь между атомами ненаправленная. Каждый атом стремится окружить себя как можно большим числом соседних атомов, следствием чегоявляется высокая компактность металлов.

Электроны, образующие электронный газ, называют электронами проводимости, поскольку они легко перемещаются во внешнем электрическом поле, создаваяэлектрический ток.

Незаполненность валентных энергетических зон металлов определяет их высокую электропроводность,теплопроводность, металлический блеск и др. Все металлыимеют положительный температурный коэффициент электрического сопротивления, т. е. при Т→0 К R → 0 (у полупроводников и неметаллов при Т→0 К R→∞).

По ряду характерных признаков металлы делят на две группы: черные и цветные. К черным относят железо и его сплавы (стали, чугуны). Остальные металлы и сплавы на их основе – цветные.

Нередко к металлам железной группы относят Ni, Co и Мn.

Металлы с температурой плавления выше 1800 0 С называют тугоплавкими. К ним принадлежи Тi, Zг. Сг, V, Nb, Mo, Wи др.

Металлы с низкой температурой плавления (Hg, Sn, Bi, Cd, Pb, Zn, Sb и др.) относят к легкоплавким.

К легким относят металлы с низкой плотностью. К ним принадлежат нашедшие широкое техническое применение Mg, Be, Al, Ti.

Металлы (Ag, Au, Os, Ir, Pt, Rh, Pd и др.) составляют группу благородных. Они химически инертны.К благородным металлам часто относят медь, обладающую химической стойкостью в сухой атмосфере.

К редкоземельным металлам (РЗМ) относят металлы группы лантана – лантаноиды(Се, Рг, Nd и др.) и сходные с ними Y и Sc.

Металлы актиноидной (урановой) группы составляют используемые в атомной технике актиноиды (Th, Pa, U и др.).

Li, Na, К и др. (их используют в качестве теплоносителей в быстрых ядерных реакторах с высоко энергетической активной зоной) составляют группу щелочноземельных металлов.

Ряд металлов (Fe, Ni, Co, Gd), в связи с особенностями их электронного строения, обладает ферромагнетизмом –способностью сильно намагничиваться во внешнем магнитном поле. Основные свойства ферромагнетиков определяются доменной структурой их кристаллов. Домен –это область кристалла размером 10 -4 . 10 -6 м, которая при отсутствии внешнего магнитного поля спонтанно (самопроизвольно) намагничена до насыщения. Магнитные моменты отдельных доменов направлены различно, поэтому полный магнитный момент ферромагнетика равен нулю.

Занятие 2. Кристаллическое строение металлови дефекты кристаллических структур

Большинство металлов имеют кристаллическую решетку. Положительно заряженные ионы, образующие каркас металлического тела, совершают непрерывные тепловые колебания около точек, закономерно расположенных в определенных местах пространства. Эти точки являются узлами воображаемой пространственной кристаллической решетки.

Наименьший объем кристалла, при трансляции которого по координатным осями воспроизводится вся кристаллическая решетка, называется элементарной кристаллической ячейкой.Ячейка характеризуется параметрами а, Ь и с – периодами кристаллической решетки (расстояниями между атомами, расположенными на ребрах ячейки, направленных по осям х, у и z соответственно) и углами между координатными осями – a (между осями х и z), β (между у и z), γ (между x и у).

Различают простые и сложные кристаллические решетки. В элементарной ячейке простой решетки атомы (ионы) расположены только в вершинах образующего ячейку многогранника. В сложных – они могут находиться также внутри многогранника или на его гранях.

Металлы имеют сложные кристаллические решетки. В большинстве случаев – это кубическая объемно-центрированная (ОЦК), кубическая гранецентрированная (ГЦК) и гексагональная плотноупакованная (ГПУ).

В элементарной ячейке ОЦК атомы находятся в вершинах куба и внутри него, в точке пересечения пространственных диагоналей. В ячейке ГЦК атомы расположены в вершинах куба и в центре каждой грани. В ячейке ГПУ атомы находятся в вершинах правильной шестигранной призмы, в центре каждого ее основания и, кроме того, три атома заключены внутри призмы.

Размеры элементарной ячейки определяются размерами образующих ее атомов. При этом полагают, что атомы, представляемые в виде жестких шаров, касаются друг друга в направлениях ячейки с наиболее плотным их расположением.

Во многих случаях в разных температурных интервалах один и тот же металл обладает различными кристаллическими решетками. Такое явление носит название полиморфизм или аллотропия.

Важными характеристиками кристаллической решетки являются коэффициент компактности, координационное число, базис.

Коэффициент компактности – это отношение объема принадлежащих кристаллической ячейке атомов к объему всей ячейки. Следует иметь в виду, что в кристаллической решетке часть атомов, составляющих ячейку, относится не только к данной ячейке, но и к ячейкам, находящимся по соседству. Например, атом, расположенный в вершине кубической ячейки (простая кубическая, ОЦК, ГЦК) принадлежит еще семи соседним ячейкам, т.е. данной ячейке принадлежит лишь 1/8 атома.

Коэффициент компактности простой кубической решетки равен 52 %, ОЦК – 68 %, ГЦК – 74 % (столь же компактна решетка ГПУ). Остальное пространство занято порами. В ячейке ГЦК в центре расположена крупная октаэдрическая пора с радиусом, равным 0,41 радиуса атома. В ячейке ОЦК больших пор нет. Поры, расположенные на ребрах ячейки, имеют радиус, равный 0,16 радиуса атома.

Координационное число – это число атомов, находящихся в кристаллической решетке на равном наименьшем расстоянии от данного атома. Каждый атом простой кубической решетки имеет 6 ближайших соседей, расположенных на расстоянии длины ребра куба (на расстоянии периода решетки). Координационное число такой решетки обозначают К6. В ОЦК решетке у каждого атома 8 ближайших соседей и координационное число равно 8 (К8). В ГЦК и ГПУ решетках каждый атом имеет 12 ближайших соседей. Соответственно координационные числа К12 и Г12.

Чем выше координационное число, тем плотнее пространственная кристаллическая решетка материала.

Базис кристаллической решетки – это таблица координат атомов, принадлежащих элементарной ячейке, рассматриваемой в пространственных координатных осях. Базис простой кубической решетки (0,0,0), ОЦК – (0,0,0; 1/2,1/2,1/2), ГЦК – (0,0,0; 1/2,0,1/2; 0,1/2,1/2; 1/2,1/2,0).

Пространственное положение кристаллографических плоскостей (плоскостей, проходящих через определенные группы атомов кристаллической решетки), а также кристаллографических направлений характеризуется кристаллографическими индексами.

Индексы плоскости – это три целых числа, заключенных в круглые скобки и представляющих собой приведенные к целым числам значения обратных величин отрезков, отсекаемых плоскостью на осях х, у, z.За единицы длины принимают параметры решетки а, b, с. Например, плоскость, включающая пространственные диагонали куба, имеет индексы (101). Если плоскость отсекает отрицательные отрезки, то знак минус ставится над соответствующим индексом. Кристаллографические индексы отражают положение не только данной плоскости, но целого семейства плоскостей, ей параллельных.

Индексы направлений – это три числа, заключенных в квадратные скобки и представляющих собой приведенные к целым значениям координаты любой точки направления после его параллельного переноса в начало координат. За единицы принимают параметры кристаллической решетки. Например, направление совпадающее с пространственной диагональю куба, имеет индексы [111]. Если направление имеет отрицательные координаты, то над соответствующим индексом ставится знак минус.

В различных направлениях кристаллической решетки плотность расположения атомов различна, что влечет за собой различие в свойствах кристалла в зависимости от направления, в котором это свойство измерено – анизотропию. В поликристаллических телах в пределах отдельных зерен наблюдается явление анизотропии. Однако, поскольку ориентация кристаллической решетки в различных зернах различна, в целом по куску материала свойства усредняются. Поэтому реальные металлы являются изотропными,т.е. телами с примерно одинаковыми свойствами по всем направлениям. Поскольку их изотропность является не истиной, а усредненной, то их принято называть квазиизотропами. Если каким-либо способом, например давлением, сориентировать кристаллические решетки в зернах одинаково (создать текстуру деформации), то такое поликристаллическое тело станет анизотропным.

Реальные кристаллы всегда содержат дефекты – искажения правильного расположения атомов в пространстве. Различают точечные, линейные, поверхностные и объемные дефекты.

Точечные дефекты по размерам сравнимы с межатомными расстояниями. К ним относятся вакансии (отсутствие атома в узле кристаллической решетки), межузельные или дислоцированные атомы (атом находится в межузельном пространстве кристаллической решетки) и примесные атомы. Среди последних различают атомы замещения (чужеродный атом занимает место в узле кристаллической решетки) и атомы внедрения (чужеродный атом находится в межузельном пространстве решетки).

Линейные дефекты по размерам в двух направлениях сравнимы с межатомными расстояниями, а в третьем простираются на многие тысячи периодов кристаллической решетки. Важнейшими видами линейных несовершенств являются краевые (линейные) и винтовые дислокации.

Образование краевых дислокаций вызвано присутствием в кристаллической решетке неполных кристаллографических плоскостей. Такие полуплоскости, не имеющие продолжения в нижней или верхней частях кристаллической решетки, называются экстраплоскостями. Краевая дислокация представляет собой область упругих искажений, проходящих вдоль края экстраплоскости. Различают положительные и отрицательные дислокации. Положительная дислокация (ее отмечают знаком ┴.) возникает, если экстраплоскость находится в верхней части кристалла, если в нижней – отрицательная (ее отмечают знаком ┬).

Винтовая дислокация – это область упругих искажений кристаллической решетки, проходящая вдоль линии, вокруг которой атомные плоскости изогнуты по винтовой поверхности. В зависимости от направления изгиба различают правые и левые винтовые дислокации.

Дислокации (краевые и винтовые) не могут обрываться внутри кристалла. Они выходят на границы кристалла, прерываются другими дислокациями или образуют дислокационные петли.

Поверхностные дефекты малы только в одном направлении. Они представляют собой упругие искажения кристаллической решетки по границам зерен или их фрагментов (блоков мозаичной структуры). Различают большеугловые (высокоугловые) и малоугловые (низкоугловые) границы.

Большеугловые границы представляют собой области в несколько периодов кристаллической решетки, на протяжении которых решетка одной кристаллографической ориентации переходит в решетку другой ориентации. Такое строение имеют межзеренные границы.

Малоугловые границы представляют собой цепочки дислокаций (дислокационные стенки), отделяющие одну часть кристаллической решетки от другой (один блок мозаичной структуры от другого). Плотность расположения дислокаций зависит от угла между кристаллографическими плоскостями в соседних блоках. Чем угол больше (в пределах до нескольких угловых градусов), тем чаще расположены дислокации.

Объемные дефекты представляют собой искажения решетки, вызванные наличием пор, трещин, раковин и других макронарушений непрерывности кристаллической решетки.

Источник

Читайте также:  Более активный металл это катод или анод
Поделиться с друзьями
Металл
Adblock
detector