Что называется пластичностью металла или сплава

Что называется пластичностью металла или сплава

§ 2. Свойства металлов и сплавов

Свойства металлов и сплавов делятся на:

  1. физические;
  2. механические;
  3. технологические;
  4. химические.

Физические свойства

Цвет и блеск. Эти два свойства обусловливают в основном внешний вид металла и являются чрезвычайно существенными для художника. Этими свойствами характеризуются художественно-эстетические достоинства металлов как материалов, из которых создаются произведения искусства.

Каждый металл или сплав обладает определенным присущим ему цветом. Однако большинство из них имеет довольно однообразную гамму серовато-белых, серебристых тонов, то более теплых, то холодных. Исключение составляют два металла: золото, имеющее насыщенный желтый цвет, и медь, отличающаяся сильным оранжево-красным цветом. Добавка этих металлов в сплавы придает им желтые и красные оттенки. В табл. 1 приведены цвета наиболее распространенных в художественной промышленности металлов и сплавов.


Таблица 1

Часто готовые художественные изделия, выполненные из одних металлов, покрывают тонким слоем других, более эффективных по цвету или блеску металлов: например, золочение серебра и бронзы, хромирование и никелирование стали, серебрение меди и латуни и т. п.

Иногда для обогащения цвета применяют не сам металл, а его окислы или другие химические соединения. Такой прием носит название оксидирования или патинирования. Этим способом можно получить очень разнообразные по силе и яркости тона и значительно расширять цветовую палитру художника-металлиста. Оксидирование позволяет получить различные оттенки желтых, зеленых, синих, голубых, фиолетовых, красных, коричневых, черных цветов, весьма прочных и стойких против внешних условий.

Плотность. По плотности все металлы разделяются на легкие и тяжелые. Легкими принято называть металлы с плотностью до 3, а тяжелыми — с плотностью от 6 и выше.

В табл. 2 приведены плотности металлов и сплавов, наиболее часто применяемых в художественных изделиях.


Таблица 2

Плавкость, или температура плавления. Температуры плавления металлов и их сплавов находятся в огромных пределах. Например, некоторые легкоплавкие сплавы (сплав Вуда) плавятся уже при температуре 60°С, а наиболее тугоплавкий из металлов — вольфрам плавится только при 3380°С. Ртуть является примером металла, который при комнатной температуре находится в жидком состоянии. Она плавится при температуре минус 39°С.

По температурам плавления все металлы разделяются на легкоплавкие (температура плавления не превышает 700°С) и тугоплавкие — свыше 900°С.

В табл. 3 приведена температура плавления некоторых металлов в градусах Цельсия.


Таблица 3

Как видно из табл. 3, к легкоплавким металлам относятся: олово, свинец, цинк, кадмий, сурьма, алюминий, магний и их сплавы.

Легкоплавкие металлы идут для приготовления легкоплавких сплавов и мягких припоев.

К тугоплавким металлам относятся: серебро, золото, платина, медь, никель, марганец, железо, хром, вольфрам и др.

Механические свойства

Механические свойства имеют большое значение при конструировании и производстве изделий художественной промышленности.

Прочность, или крепость,- это свойство металлов выдерживать различные нагрузки не разрушаясь. Прочность — одно из важных свойств металлов. При проектировании художественных изделий выбор металлов и сплавов осуществляется с учетом их прочности.

Для точного определения и измерения прочности из металла или сплава изготовляют образец и подвергают его испытанию на специальной разрывной машине, которая постепенно, но с возрастающей силой растягивает образец до полного его разрыва.

Наибольшее напряжение, которое может выдержать образец металла не разрушаясь, называется пределом прочности для данного металла или временным сопротивлением разрыву.

Упругость — свойство металла принимать свою первоначальную форму после снятия нагрузки. При постепенном увеличении нагрузки на образец во время испытания его на разрывной машине он сначала вытягивается упруго, как резина или пружина. Если нагрузку снять, то образец снова сократится и примет свою первоначальную длину. Наибольшее напряжение металла, после которого он возвращается к своей первоначальной длине, называется пределом упругости.

Если при дальнейшем повышении нагрузки напряжение превышает предел упругости и удлинение сохраняется после разгрузки образца, то такое состояние называют остаточным удлинением. Затем наступает предел текучести, при котором образец продолжает удлиняться без увеличения нагрузки — в этом случае металл «течет». Такая способность к текучести используется в штамповочном производстве, особенно при глубокой вытяжке.

Наибольшей упругостью обладает хромоникелевая закаленная сталь. Алюминий и медь совершенно не обладают упругостью — даже при незначительной нагрузке они образуют остаточное удлинение, а не упругое.

Пластичность — свойство металла изменять свою форму под действием силы, не проявляя признаков разрушения (трещин, разрывов и т. п.), и сохранять полученную форму после снятия нагрузки. Это свойство также определяется и измеряется на разрывной машине.

Пластичность металла характеризуется удлинением образца за время испытания. Для определения степени пластичности пользуются следующим приемом: после разрыва образца складывают его части и измеряют общую их длину. Отношение приращения длины к его первоначальной длине, выраженное в процентах, является показателем пластичности металла и называется относительным удлинением. Это свойство металлов имеет большое значение в давильном и штамповочном производстве, а также при дифовке, чеканке, прокатке и волочении. Высокой пластичностью обладают драгоценные металлы — золото, серебро, платина и их сплавы; не менее пластичны медь и свинец. Почти совершенно отсутствует это свойство у чугуна, сурьмы и некоторых других металлов.

Твердость — свойство металлов сопротивляться проникновению в них другого тела под действием внешней нагрузки. От этого свойства зависит возможность обработки металлов тем или иным инструментом. Например, при обработке резанием на станках важно знать твердость обрабатываемого металла, чтобы подобрать соответствующий резец, сверло или фрезу.

Читайте также:  Зеленый кристаллогидрат сульфата металла

Для определения твердости существует несколько способов и специальных приборов. Наиболее распространенные и общепринятые следующие.

Способ Бринелля. Определение твердости этим способом заключается в том, что в испытуемый металл при помощи специального пресса вдавливается определенной нагрузкой стальной закаленный шарик. От давления шарика на металле образуется лунка, отпечаток. Чем мягче металл, тем площадь лунки больше. Диаметр лунки определяется мерительной лупой, а затем в специальной таблице находят число твердости по Бринеллю.

В табл. 4 приведены числа твердости по Бринеллю для некоторых металлов.


Таблица 4

Способ Роквелла. Определение твердости этим способом производится тоже путем вдавливания в металл алмазной призмы или стального шарика, но отсчет ведется не по площади, а по разнице глубины отпечатка между глубиной от стандартной нагрузки, равной 10 кг, и заданной.

Измерение производят специальным прибором — индикатором, и число твердости показывает сам прибор.

Способ Шора. Измерение по этому способу производится при помощи специального прибора — склероскопа. При этом стальной боек падает на испытуемый металл с определенной высоты. Твердость металла характеризуется высотой, на которую отскакивает боек. Чем тверже металл, тем больше высота отскока. Этот способ удобен тем, что он не портит поверхности и может применяться к готовым изделиям художественной промышленности.

Выносливость — свойство металлов выдерживать не разрушаясь большое количество повторяющихся переменных нагрузок.

Все механические свойства значительно изменяются в зависимости от температурных условий. Так, например, прочность всех металлов при нагреве понижается, а пластичность в большинстве случаев увеличивается.

Изменение свойств металлов в условиях пониженных температур изучено еще недостаточно. Однако хорошо известно, что на холоде у некоторых металлов резко падает пластичность и они становятся хрупкими. С этой точки зрения все металлы делятся на три группы:

  1. хладоломкие — сталь некоторых марок, цинк и его сплавы;
  2. нехладоломкие — медь, алюминий;
  3. хрупкие — металлы, обладающие хрупкостью и при нормальных условиях, например серый чугун.

Технологические свойства

При выборе металла или сплава для производства художественных изделий кроме физических и механических свойств учитывают и технологические свойства, т. е. способность металлов обрабатываться различными приемами и методами без особых затруднений.

Наиболее существенными являются следующие свойства.

Жидкотекучесть — свойство, обеспечивающее хорошее заполнение формы расплавленным металлом. Величина жидкотекучести зависит от атомного веса, температуры плавления, степени поверхностного натяжения и других показателей.

Металлы и сплавы, обладающие высокой жидкотекучестью, позволяют получать высокохудожественные отливки. Они легко заполняют мельчайшие детали форм и хорошо передают все детали модели, включая и фактуру поверхности. Хорошей жидкотекучестью обладают следующие металлы и сплавы: цинк и его сплавы, чугун, бронза, олово, силумин (сплав алюминия с кремнием), а также некоторые магниевые сплавы и литейные латуни.

Существует понятие, обратное жидкотекучести,- густоплавкость. Металлы и сплавы, обладающие густоплавкостью, даже при высоком нагреве остаются густыми и при заливке форм плохо их заполняют. К густоплавким относятся чистое серебро, красная медь, сталь.

Литейная усадка — уменьшение объема при переходе из жидкого состояния в твердое. При охлаждении металла отливка сокращается и как бы отходит от стенок формы. Отливка всегда меньше модели, по которой сделана форма. Величина усадки бывает различной. Металлы и сплавы с большой усадкой менее применимы для литья.

В табл. 5 приведены литейные усадки некоторых металлов и сплавов.


Таблица 5

Зная величину литейной усадки, можно определить, насколько больше следует изготовить форму, чтобы получить отливку нужного размера.

Ковкость — свойство металла изменять свою форму под действием ударов или давления не разрушаясь. Степень ковкости зависит от многих параметров. Наиболее существенными из них являются следующие: пластичность, степень нагрева, величина деформирующего усилия, наличие примесей и др.

Металлы могут коваться как в холодном состоянии, например красная медь, золото, так и в горячем, например сталь. Это свойство широко используется при изготовлении художественных кованых изделий из малоуглеродистой стали (ранее называемой ковочным железом). Малоуглеродистая сталь, раскаленная докрасна, становится настолько пластичной и мягкой, что из нее можно изготовлять художественные изделия самой разнообразной сложной формы.

Свариваемость — способность металла прочно соединяться путем местного нагрева и расплавления свариваемых кромок изделия. , Чистые металлы свариваются легче, а сплавы труднее. Легко свариваются изделия из малоуглеродистой стали. Чем выше процент содержания углерода в стали, тем свариваемость ее хуже. Наиболее затруднительной считается сварка высокоуглеродистых легированных сталей и особенно чугуна.

Спекаемость — свойство, в результате которого образуется металлокерамика. При этом металлы, предварительно измельченные в порошок, смешиваются, запрессовываются в специальные формы и подвергаются действию высокой температуры и давления до спекания. Различные металлы спекаются неодинаково — одни лучше, другие хуже. Способом спекания сейчас производят особо твердые стойкие сплавы, например победит, который применяется при изготовлении режущих инструментов.

Обрабатываемость резанием на различных станках (токарном, фрезерном и пр.), а также способность шлифоваться и полироваться — это свойства, играющие существенную роль в производстве художественных изделий и особенно в отделке (полировании). Хорошо режутся бронзы, латуни и некоторые марки сталей, алюминия и чугуна. Особенно плохо обрабатываются на станках детали из красной меди и из свинца и его сплавов.

Химические свойства

Из химических свойств металлов практически наиболее важными в производстве изделий художественной промышленности являются растворение и окисление.

Растворение, или разъедание,— это способность металлов и сплавов растворяться в сильных кислотах и едких щелочах. Наиболее часто в производстве употребляются серная, азотная и соляная кислоты, а также смесь азотной и соляной кислот, называемая «царской водкой», а из щелочей — едкий натр и едкое кали.

Читайте также:  С растворами кислот будут взаимодействовать оба металла na cu

Свойство металлов растворяться имеет очень широкое применение в самых различных областях производства художественных изделий из металла. При этом следует различать случаи, когда растворение носит частичный характер и ограничивается только поверхностным слоем металла, а также случаи полного растворения металла и перехода его в раствор. Примерами частичного растворения с поверхности являются:

    травление изделий в кислотах для получения чистой поверхности или узора (рис. 2);


Рис. 2. Вазы из алюминия, обработанные травлением. Художник Л. Линакс

Примерами полного растворения металла являются:

  • растворение цинка в соляной кислоте для приготовления хлористого цинка, употребляемого в качестве флюса при пайке;
  • растворение серебра в азотной кислоте при приготовлении азотнокислого серебра и т. п.

Окисление — способность металлов соединяться с кислородом и образовывать окислы металлов. При окислении вес металла увеличивается на вес кислорода, который с ним соединяется. Обычно почти все металлы и сплавы покрыты с поверхности тонкой оксидной (или окисной) пленкой, представляющей собой тончайший слой, состоящий из окислов.

Скорость образования такой пленки на поверхности изделия из различных металлов неодинакова. Например, магний и алюминий окисляются особенно быстро, бронза и латунь значительно медленнее, а изделия из золота и платины совсем не окисляются.

Особенно быстро окисление происходит при нагреве до высоких температур. В этом случае на поверхности металла быстро образуется более толстый слой, состоящий из окислов, который называется окалиной. Чем выше нагрев и больше доступ воздуха к нагреваемому изделию, тем толще слой образующейся окалины. Если металл нагревать в условиях избытка воздуха или кислорода, то весь металл может превратиться в окалину.

В одних случаях способность металлов к окислению и образование на их поверхности оксидной пленки является желательным, так как такая пленка предохраняет изделие от дальнейшего окисления металла в глубину и носит название защитной пленки. Таковы окисные пленки на изделиях из алюминиевых сплавов.

В других случаях образование окислов на поверхности металлов является нежелательным, например трудности пайки и сварки алюминиевых изделий обусловлены быстрым образованием очень прочной оксидной пленки, которая препятствует соприкосновению припоя с чистой поверхностью металла. Очень нежелательно и образование окалины на стальных изделиях в процессе их закалки, которая появляется даже при содержании кислорода в атмосфере, не превышающем 0,2%.

Источник

Что называется пластичностью металла или сплава

Чтобы машина работала долго и надежно в различных условиях, необходимо ее детали изготовлять из материалов, имеющих определенные физические, механические, технологические и химические свойства.

Физические свойства. К этим свойствам относятся: цвет, удельный вес, теплопроводность, электропроводность, температура плавления, расширение при нагревании.

Цвет металла или сплава является одним из признаков, позволяющих судить о его свойствах. При нагреве по цвету поверхности металла можно примерно определить, до какой температуры он нагрет, что особо важно для сварщиков. Однако некоторые металлы (алюминий) при нагреве не меняют цвета.

Поверхность окисленного металла имеет иной цвет, чем не окисленного.

Удельный вес — вес одного кубического сантиметра вещества, выраженный в граммах. Например, углеродистая сталь имеет удельный вес, равный 7,8 г/см. В авто- и авиастроении вес деталей является одной из важнейших характеристик, поскольку конструкции должны быть не только прочными, но и легкими. Чем больше удельный вес металла, тем более тяжелым (при равном объеме) получается изделие.

Теплопроводность — способность металла проводить тепло — измеряется количеством тепла, которое проходит по металлическому стержню сечением в 1 см2 за 1 мин. Чем больше теплопроводность, тем труднее нагреть кромки свариваемой детали до нужной температуры.

Температура плавления — температура, при которой металл переходит из твердого состояния в жидкое. Чистые металлы плавятся при одной постоянной температуре, а сплавы — в интервале температур.

Расширение металлов при нагревании является важной характеристикой. Поскольку при сварке происходит местный нагрев (нагрев лишь небольшого участка изделия), то изделие в различных частях нагревается до разных температур, что приводит к деформированию (короблению) изделия. Две детали, изготовленные из разных металлов и нагретые до одинаковой температуры, будут расширяться по-разному. Поэтому, если эти детали будут скреплены между собой, то при нагревании могут изогнуться и даже разрушиться.

Усадка — уменьшение объема расплавленного металла при его охлаждении. В процессе усадки металла сварного шва наблюдается коробление детали, появляются трещины или образуются усадочные раковины. Каждый металл имеет свою величину усадки. Чем она больше, тем труднее получить качественное соединение.

Механические свойства. К механическим свойствам металлов и сплавов относятся прочность, твердость, упругость, пластичность, вязкость.

Эти свойства обычно являются решающими показателями, по которым судят о пригодности металла к различным условиям работы.

Прочность — способность металла сопротивляться разрушению при действии на него нагрузки.

Твердость — способность металла сопротивляться внедрению в его поверхность другого более твердого тела.

Упругость — свойство металла восстанавливать свою форму и размеры после прекращения действия нагрузки. Высокой упругостью должна обладать, например, рессоры и пружины, поэтому они изготовляются из специальных сплавов.

Пластичность — способность металла изменять форму и размеры под действием внешней нагрузки и сохранять новую форму и размеры после прекращения действия сил. Пластичность — свойство, обратное упругости. Чем больше пластичность, тем легче металл куется, штампуется, прокатывается.

Вязкость — способность металла оказывать сопротивление быстро возрастающим (ударным) нагрузкам. Вязкость — свойство, обратное хрупкости. Вязкие металлы применяются в тех случаях, когда детали при работе подвергаются ударной нагрузке (детали вагонов, автомобилей и т. п.).

Механические свойства выявляются при воздействии на металл растягивающих, изгибающих или других сил. Механические свойства металлов характеризуются: 1) пределом прочности в кг/мм2; 2) относительным удлинением в %;3) ударной вязкостью в кгм/см2; 4) твердостью; 5) углом загиба. Перечисленные основные свойства металлов определяются следующими испытаниями: 1) на растяжение; 2) на загиб; 3) на твердость; 4) на удар. Все эти испытания производятся на образцах металла при помощи специальных машин.

Читайте также:  Какую выбрать эмаль по металлу

Испытание на растяжение. Испытанием на растяжение определяют предел прочности и относительное удлинение металла. Пределом прочности называется усилие, которое надо приложить на единицу площади поперечного сечения образца металла, чтобы разорвать его.

Для испытания на растяжение изготовляют образцы, форма и размеры которых установлены ГОСТ 1497-42. На рисунке представлены размеры и форма цилиндрических образцов для испытания на растяжение на специальных разрывных машинах» Головки образца закрепляют в захваты машины, после чего дают нагрузку, растягивающую образец до разрушения. Если величину разрушающего усилия выраженного в килограммах, разделить на число квадратных миллиметров поперечного сечения образца Fo9 то получим величину предела прочности в килограммах на квадратный миллиметр (предел прочности обозначается ов):

Для испытания листового металла изготовляют плоские образцы. На рисунке, в показаны размеры и форма плоских образцов для испытания сварных соединений. Малоуглеродистые стали имеют предел прочности около 40 кг/мм2 стали повышенной прочности и специальные — 150 кг/мм2. Для вычисления относительного удлинения, обозначаемого Ъ, определяют сначала абсолютное удлинение образца. Для этого разорванные части образца плотно прикладывают друг к другу и замеряют расстояние между метками границ расчетной длины (получают размер /). Затем из полученной длины вычитают первоначальную расчетную длину образца /о, остаток делят на первоначальную расчетную длину и умножают на 100.

Относительное удлинение металла есть выраженное в процентах отношение остающегося после разрыва увеличения длины образца К его первоначальной длине.

Относительное удлинение малоуглеродистой стали примерно равно 20%. Относительное удлинение характеризует пластичность металла, оно снижается с повышением предела прочности.

Испытание на твердость. В нашей промышленности для определения твердости металла чаще всего применяется прибор Бринеля или Роквелла. Твердость по Бринелю определяют следующим образом. Твердый стальной шарик диаметром 10,5 или 2,5 мм вдавливается под прессом в испытуемый металл. Затем при помощи бинокулярной трубки измеряют диаметр отпечатка, который получился под шариком на испытуемом металле. По диаметру отпечатка и по соответствующей таблице определяют твердость по Бринелю.

Твердость некоторых сталей в единицах по Бринелю:

Малоуглеродистая сталь. ИВ 120—130

Сталь повышенной прочности . ИВ 200—300 Твердые закаленные стали. ИВ 500—600

С увеличением твердости пластичность металла снижается. Испытание на удар. Этим испытанием определяют способность металла противостоять ударным нагрузкам. Испытанием на удар определяют ударную вязкость металла.

Ударная вязкость определяется путем испытания образцов на специальных маятниковых копрах. Для испытания применяются специальные квадратные образцы с надрезом (фиг. 11,е). Чем меньше ударная вязкость, тем более хрупок и тем менее надежен в работе такой металл. Чем выше ударная вязкость, тем металл лучше. Хорошая малоуглеродистая сталь имеет ударную вязкость, равную 10—15 кгм/см2.

Во многих случаях для проверки пластичности металлов или сварных соединений применяют технологические испытания образцов, к которым относятся испытания на угол загиба, на сплющивание, продавливание и др.

Испытания на загиб. Для проведения испытания на загиб образец из металла укладывается на шарнирных опорах и нагрузкой, приложенной посредине, изгибается до появления трещин на выпуклой стороне образца. После этого испытание прекращают и измеряют величину внешнего угла а. Чем больше угол загиба, тем пластичнее металл. Качественная малоуглеродистая сталь дает угол загиба 180°.

Для определения пластичности сварного соединения вырезают такой же плоский образец со сварным швом, расположенным посредине, и со снятым усилением.

Испытанием на сплющивание определяют способность металла деформироваться при сплющивании. Этой пробе обычно подвергают отрезки сварных труб диаметром 22—52 мм со стенками толщиной от 2,5 до 10 мм. Проба заключается в сплющивании образца под прессом до получения просвета между внутренними стенками трубы, равного учетверенной толщине стенки трубы. При этом испытании образец не должен давать трещин.

Технологические свойства. В эту группу свойств входят свариваемость, жидкотекучесть, ковкость, обрабатываемость резанием и другие. Технологические свойства имеют весьма важное значение при производстве тех или иных технологических операций и определяют пригодность металла к обработке тем или иным способом.

Свариваемость — свойство металлов давать доброкачественные соединения при сварке, характеризующиеся отсутствием трещин и других пороков металла в швах и прилегающих зонах, причем иногда металл хорошо сваривается одним методом и неудовлетворительно— другим. Например, дюралюминий удовлетворительно сваривается точечной сваркой и плохо — газовой, чугун хорошо сваривается газовой сваркой с подогревом и плохо — дуговой и т. д.

Жидкотекучесть — способность расплавленных металлов и сплавов заполнять литерную форму.

Ковкость — способность металлов и сплавов изменять свою форму при обработке давлением.

Обрабатываемость резанием — способность металла более или менее легко обрабатываться острым режущим инструментом (резцом, фрезой, ножовкой и т. д.) при различных операциях механической обработки (резание, фрезерование и т. д.).

Химические свойства. Под химическими свойствами металлов подразумевается их способность вступать в соединение с различными веществами и в первую очередь с кислородом. Чем легче металл вступает в соединение с вредными для него элементами, тем легче он разрушается. Разрушение металлов под действием окружающей их среды (воздуха, влаги, растворов солей, кислот, щелочей) называется коррозией. Для достижения высокой коррозионной стойкости изготавливаются специальные стали (нержавеющие, кислотостойкие и т. п.).

Источник

Поделиться с друзьями
Металл
Adblock
detector