Ca h2o взаимодействие металла с водой

Содержание
  1. Ca h2o взаимодействие металла с водой
  2. Все химические реакции, которые необходимы для успешной сдачи ОГЭ
  3. Правило 1.1. Взаимодействие простых веществ (металлов и неметаллов) с водой
  4. Правило 1.2. Взаимодействие оксидов с водой
  5. Какие металлы реагируют с водой?
  6. 2.2.2. Химические свойства металлов IIA группы.
  7. Взаимодействие с простыми веществами
  8. с кислородом
  9. с галогенами
  10. с неметаллами IV–VI групп
  11. с водородом
  12. Взаимодействие со сложными веществами
  13. с водой
  14. c кислотами-неокислителями
  15. c кислотами-окислителями
  16. − разбавленной азотной кислотой
  17. − концентрированной азотной кислотой
  18. − концентрированной серной кислотой
  19. с щелочами
  20. с оксидами
  21. Все химические реакции, которые необходимы для успешной сдачи ОГЭ
  22. Правило 1.1. Взаимодействие простых веществ (металлов и неметаллов) с водой
  23. Правило 1.2. Взаимодействие оксидов с водой
  24. Кальций: способы получения и химические свойства
  25. Способ получения
  26. Качественная реакция
  27. Химические свойства

Ca h2o взаимодействие металла с водой

ВЗАИМОДЕЙСТВИЕ МЕТАЛЛОВ С ВОДОЙ

Вода является очень слабым электролитом, однако в процессе диссоциации ее молекул, хоть и в небольшом количестве, образуются ионы водорода:

H2O H + + OH —

Образующиеся ионы Н + способны окислять атомы металлов, расположенных в ряду активности до водорода, восстанавливаясь до молекулярного водорода:

Следовательно, продуктом восстановления при взаимодействии любого металла (если он стоит в ряду активности левее водорода) с водой будет газообразный водород. Состав же продукта окисления зависит от активности металла и условий протекания реакции.

Активные металлы энергично взаимодействуют с водой при обычных условиях по схеме:

Продуктом окисления металла является его гидроксид – Me ( OH ) n (где n -степень окисления металла).

Металлы средней активности взаимодействуют с водой при нагревании по схеме:

2Me + nH2O Me2On + nH2

Продукт окисления в таких реакциях – оксид металла Me 2 On (где n -степень окисления металла).

3 Fe + 4 H 2 O пар Fe 2 O 3 · FeO + 4 H 2

Источник

Все химические реакции, которые необходимы для успешной сдачи ОГЭ

Правило 1.1. Взаимодействие простых веществ (металлов и неметаллов) с водой

1) Щелочные (Li-Fr) и щелочноземельные (Ca-Ra) металлы взаимодействуют с водой при комнатной температуре с образованием щелочи (растворимого основания) и выделением водорода. Например:

2) Магний также взаимодействует с водой, но при сильном нагревании и с образованием нерастворимого гидроксида:

3) Алюминий реагирует с водой, но только если убрать оксидную пленку:

4) Металлы, находящиеся в ряду активности от Zn (включительно) до Pb (включительно), взаимодействуют с парами воды (т.е. при температуре выше 100°С), при этом образуются оксиды соответствующих металлов и водород:

5) Металлы, стоящие в ряду активности правее водорода, с водой не взаимодействуют даже при нагревании.

Cu + H2O → реакция не идет.

6) Из неметаллов с водой реагируют галогены, C и Si при высоких температурах:

Правило 1.2. Взаимодействие оксидов с водой

1) Основные оксиды щелочных и щелочноземельных металлов реагируют с водой при комнатной температуре с образованием соответствующих щелочей:

2) Амфотерные оксиды не реагируют с водой и не растворяются в ней.

ZnO + H2O → реакция не идет.

3) Кислотные оксиды взаимодействуют с водой с образованием соответствующих кислот: P2O5 + 3H2O → 2H3PO4

Только в случае NO2 образуются две кислоты:

2NO2 + H2O → HNO2 + HNO3 и, как следствие, при взаимодействии с щелочами образуются две соли (нитраты и нитриты соответствующего металла):

SiO2 + H2O → реакция не идет.

Источник

Какие металлы реагируют с водой?

Прежде всего следует запомнить, что металлы делят в целом на три группы:

1) Активные металлы: к таким металлам относятся все щелочные металлы, щелочноземельные металлы, а также магний и алюминий.

2) Металлы средней активности: к таковым относят металлы, расположенные между алюминием и водородом в ряду активности.

3) Малоактивные металлы: металлы, расположенные в ряду активности правее водорода.

В первую очередь нужно запомнить, что малоактивные металлы (т.е. те, что расположены после водорода) с водой не реагируют ни при каких условиях.

Щелочные и щелочноземельные металлы реагируют с водой при любых условиях (даже при обычной температуре и на холоде), при этом реакция сопровождается выделением водорода и образованием гидроксида металла. Например:

Магний из-за того, что покрыт защитной оксидной пленкой, реагирует с водой только при кипячении. При нагревании в воде оксидная пленка, состоящая из MgO, разрушается и находящийся под ней магний начинает реагировать с водой. При этом реакция также сопровождается выделением водорода и образованием гидроксида металла, который, однако, в случае магния нерастворим:

Читайте также:  Лопатка для торта металл 27см mvq 151121

Алюминий так же, как и магний, покрыт защитной оксидной пленкой, однако в этом случае кипячением ее разрушить нельзя. Для ее снятия требуются либо механическая чистка (каким-либо абразивом), либо ее химическое разрушение щелочью, растворами солей ртути или солей аммония:

Металлы средней активности реагируют с водой лишь тогда, когда она находится в состоянии перегретого водяного пара. Сам металл при этом должен быть нагрет до температуры красного каления (около 600-800 о С). В отличие от активных металлов, металлы средней активности при реакции с водой вместо гидроксидов образуют оксиды металлов. Продуктом восстановления и в этом случае является водород:

Fe + H2O = FeO + H2 (в зависимости от степени нагрева)

Источник

2.2.2. Химические свойства металлов IIA группы.

IIA группа содержит только металлы – Be (бериллий), Mg (магний), Ca (кальций), Sr (стронций), Ba (барий) и Ra (радий). Химические свойства первого представителя этой группы — бериллия — наиболее сильно отличаются от химических свойств остальных элементов данной группы. Его химические свойства во многом даже более схожи с алюминием, чем с остальными металлами IIA группы (так называемое «диагональное сходство»). Магний же по химическим свойствами тоже заметно отличается от Ca, Sr, Ba и Ra, но все же имеет с ними намного больше сходных химических свойств, чем с бериллием. В связи со значительным сходством химических свойств кальция, стронция, бария и радия их объединяют в одно семейство, называемое щелочноземельными металлами.

Все элементы IIA группы относятся к s-элементам, т.е. содержат все свои валентные электроны на s-подуровне. Таким образом, электронная конфигурация внешнего электронного слоя всех химических элементов данной группы имеет вид ns 2 , где n – номер периода, в котором находится элемент.

Вследствие особенностей электронного строения металлов IIA группы, данные элементы, помимо нуля, способны иметь только одну единственную степень окисления, равную +2. Простые вещества, образованные элементами IIA группы, при участии в любых химических реакциях способны только окисляться, т.е. отдавать электроны:

Ме 0 – 2e — → Ме +2

Кальций, стронций, барий и радий обладают крайне высокой химической активностью. Простые вещества, образованные ими, являются очень сильными восстановителями. Также сильным восстановителем является магний. Восстановительная активность металлов подчиняется общим закономерностям периодического закона Д.И. Менделеева и увеличивается вниз по подгруппе.

Взаимодействие с простыми веществами

с кислородом

Без нагревания бериллий и магний не реагируют ни с кислородом воздуха, ни с чистым кислородом ввиду того, что покрыты тонкими защитными пленками, состоящими соответственно из оксидов BeO и MgO. Их хранение не требует каких-либо особых способов защиты от воздуха и влаги, в отличие от щелочноземельных металлов, которые хранят под слоем инертной по отношению к ним жидкости, чаще всего керосина.

Be, Mg, Ca, Sr при горении в кислороде образуют оксиды состава MeO, а Ba – смесь оксида бария (BaO) и пероксида бария (BaO2):

Следует отметить, что при горении щелочноземельных металлов и магния на воздухе побочно протекает также реакция этих металлов с азотом воздуха, в результате которой, помимо соединений металлов с кислородом, образуются также нитриды c общей формулой Me3N2.

с галогенами

Бериллий реагирует с галогенами только при высоких температурах, а остальные металлы IIA группы — уже при комнатной температуре:

с неметаллами IV–VI групп

Все металлы IIA группы реагируют при нагревании со всеми неметаллами IV–VI групп, но в зависимости от положения металла в группе, а также активности неметаллов требуется различная степень нагрева. Поскольку бериллий является среди всех металлов IIA группы наиболее химически инертным, при проведении его реакций с неметаллами требуется существенно большая температура.

Следует отметить, что при реакции металлов с углеродом могут образовываться карбиды разной природы. Различают карбиды, относящиеся к метанидам и условно считающимися производными метана, в котором все атомы водорода замещены на металл. Они так же, как и метан, содержат углерод в степени окисления -4, и при их гидролизе или взаимодействии с кислотами-неокислителями одним из продуктов является метан. Также существует другой тип карбидов – ацетилениды, которые содержат ион C2 2- , фактически являющийся фрагментом молекулы ацетилена. Карбиды типа ацетиленидов при гидролизе или взаимодействии с кислотами-неокислителями образуют ацетилен как один из продуктов реакции. То, какой тип карбида – метанид или ацетиленид — получится при взаимодействии того или иного металла с углеродом, зависит от размера катиона металла. С ионами металлов, обладающих малым значением радиуса, образуются, как правило, метаниды, с ионами более крупного размера – ацетилениды. В случае металлов второй группы метанид получается при взаимодействии бериллия с углеродом:

Читайте также:  Как правильно затачивать сверла по металлу на наждаке

Остальные металлы II А группы образуют с углеродом ацетилениды:

С кремнием металлы IIA группы образуют силициды — соединения вида Me2Si, с азотом – нитриды (Me3N2), фосфором – фосфиды (Me3P2):

с водородом

Все щелочноземельные металлы реагируют при нагревании с водородом. Для того чтобы магний прореагировал с водородом, одного нагрева, как в случае со щелочноземельными металлами, недостаточно, требуется, помимо высокой температуры, также и повышенное давление водорода. Бериллий не реагирует с водородом ни при каких условиях.

Взаимодействие со сложными веществами

с водой

Все щелочноземельные металлы активно реагируют с водой с образованием щелочей (растворимых гидроксидов металлов) и водорода. Магний реагирует с водой лишь при кипячении вследствие того, что при нагревании в воде растворяется защитная оксидная пленка MgO. В случае бериллия защитная оксидная пленка очень стойкая: с ним вода не реагирует ни при кипячении, ни даже при температуре красного каления:

c кислотами-неокислителями

Все металлы главной подгруппы II группы реагируют с кислотами-неокислителями, поскольку находятся в ряду активности левее водорода. При этом образуются соль соответствующей кислоты и водород. Примеры реакций:

c кислотами-окислителями

− разбавленной азотной кислотой

С разбавленной азотной кислотой реагируют все металлы IIA группы. При этом продуктами восстановления вместо водорода (как в случае кислот-неокислителей) являются оксиды азота, преимущественно оксид азота (I) (N2O), а в случае сильно разбавленной азотной кислоты – нитрат аммония (NH4NO3):

− концентрированной азотной кислотой

Концентрированная азотная кислота при обычной (или низкой) температуре пассивирует бериллий, т.е. в реакцию с ним не вступает. При кипячении реакция возможна и протекает преимущественно в соответствии с уравнением:

Магний и щелочноземельные металлы реагируют с концентрированной азотной кислотой с образованием большого спектра различных продуктов восстановления азота.

− концентрированной серной кислотой

Бериллий пассивируется концентрированной серной кислотой, т.е. не реагирует с ней в обычных условиях, однако реакция протекает при кипячении и приводит к образованию сульфата бериллия, диоксида серы и воды:

Барий также пассивируется концентрированной серной кислотой вследствие образования нерастворимого сульфата бария, но реагирует с ней при нагревании, сульфат бария растворяется при нагревании в концентрированной серной кислоте благодаря его превращению в гидросульфат бария.

Остальные металлы главной IIA группы реагируют с концентрированной серной кислотой при любых условиях, в том числе на холоду. Восстановление серы происходит преимущественно до сероводорода:

с щелочами

Магний и щелочноземельные металлы со щелочами не взаимодействуют, а бериллий легко реагирует как растворами щелочей, так и с безводными щелочами при сплавлении. При этом при осуществлении реакции в водном растворе в реакции участвует также и вода, а продуктами являются тетрагидроксобериллаты щелочных или щелочноземельных металлов и газообразный водород:

При осуществлении реакции с твердой щелочью при сплавлении образуются бериллаты щелочных или щелочноземельных металлов и водород

с оксидами

Щелочноземельные металлы, а также магний могут восстанавливать менее активные металлы и некоторые неметаллы из их оксидов при нагревании, например:

Метод восстановления металлов из их оксидов магнием называют магниетермией.

Источник

Все химические реакции, которые необходимы для успешной сдачи ОГЭ

Правило 1.1. Взаимодействие простых веществ (металлов и неметаллов) с водой

1) Щелочные (Li-Fr) и щелочноземельные (Ca-Ra) металлы взаимодействуют с водой при комнатной температуре с образованием щелочи (растворимого основания) и выделением водорода. Например:

Читайте также:  Какую железу внутренней секреции называют дирижером оркестра эндокринных желез

2) Магний также взаимодействует с водой, но при сильном нагревании и с образованием нерастворимого гидроксида:

3) Алюминий реагирует с водой, но только если убрать оксидную пленку:

4) Металлы, находящиеся в ряду активности от Zn (включительно) до Pb (включительно), взаимодействуют с парами воды (т.е. при температуре выше 100°С), при этом образуются оксиды соответствующих металлов и водород:

5) Металлы, стоящие в ряду активности правее водорода, с водой не взаимодействуют даже при нагревании.

Cu + H2O → реакция не идет.

6) Из неметаллов с водой реагируют галогены, C и Si при высоких температурах:

Правило 1.2. Взаимодействие оксидов с водой

1) Основные оксиды щелочных и щелочноземельных металлов реагируют с водой при комнатной температуре с образованием соответствующих щелочей:

2) Амфотерные оксиды не реагируют с водой и не растворяются в ней.

ZnO + H2O → реакция не идет.

3) Кислотные оксиды взаимодействуют с водой с образованием соответствующих кислот: P2O5 + 3H2O → 2H3PO4

Только в случае NO2 образуются две кислоты:

2NO2 + H2O → HNO2 + HNO3 и, как следствие, при взаимодействии с щелочами образуются две соли (нитраты и нитриты соответствующего металла):

SiO2 + H2O → реакция не идет.

Источник

Кальций: способы получения и химические свойства

Кальций Ca — это щелочноземельный металл, серебристо-белый, пластичный, достаточно твердый. Реакционноспособный. Сильный восстановитель.

Относительная молекулярная масса Mr = 40,078; относительная плотность для твердого и жидкого состояния d = 1,54; tпл = 842º C; tкип = 1495º C.

Способ получения

1. В результате электролиза жидкого хлорида кальция образуются кальций и хлор :

2. Хлорид кальция взаимодействует с алюминием при 600 — 700º С образуя кальций и хлорид алюминия:

3CaCl2 + 2Al = 3Ca + 2AlCl3

3. В результате разложения гидрида кальция при температуре выше 1000º С образуется кальций и водород:

4. Оксид кальция взаимодействует с алюминием при 1200º С и образует кальций и алюминат кальция:

4CaO + 2Al = 3Ca + Ca(AlO2)2

Качественная реакция

Кальций окрашивает пламя газовой горелки в коричнево-красный цвет.

Химические свойства

1. Кальций — сильный восстановитель . Поэтому он реагирует почти со всеми неметаллами :

1.1. Кальций взаимодействует с азотом при 200 — 450º С образуя нитрид кальция:

1.2. Кальций сгорает в кислороде (воздухе) при выше 300º С с образованием оксида кальция:

2Ca + O2 = 2CaO

1.3. Кальций активно реагирует при температуре 200 — 400º С с хлором, бромом и йодом . При этом образуются соответствующие соли :

1.4. С водородом кальций реагирует при температуре 500 — 700º C с образованием гидрида кальция:

1.5. В результате взаимодействия кальция и фтора при комнатной температуре образуется фторид кальция:

1.6. Кальций взаимодействует с серой при 150º С и образует сульфид кальция:

Ca + S = CaS

1.7. В результате реакции между кальцием и фосфором при 350 — 450º С образуется фосфид кальция:

1.8. Кальций взаимодействует с углеродом (графитом) при 550º С и образует карбид кальция:

Ca + 2C = CaC2

2. Кальций активно взаимодействует со сложными веществами:

2.1. Кальций при комнатной температуре реагирует с водой . Взаимодействие кальция с водой приводит к образованию гидроксида кальция и газа водорода:

2.2. Кальций взаимодействует с кислотами:

2.2.1. Кальций реагирует с разбавленной соляной кислотой, при этом образуются хлорид кальция и водород :

Ca + 2HCl = CaCl2 + H2

2.2.2. Реагируя с разбавленной азотной кислотой кальций образует нитрат кальция, оксид азота (I) и воду:

если азотную кислоту еще больше разбавить, то образуются нитрат кальция, нитрат аммония и вода:

2.3. Кальций вступает в реакцию с газом аммиаком при 600 — 650º С. В результате данной реакции образуется нитрид кальция и гидрид кальция:

если аммиак будет жидким, то в результате реакции в присутствии катализатора платины образуется амид кальция и водород:

Источник

Поделиться с друзьями
Металл
Adblock
detector