32 среди всех групп соединений нефти больше всего металлами обогащены

Химический состав и элементы, входящие в состав нефти, газов, битумов

Химический состав нефти и газа

Нефть и природный газ состоят главным образом из углерода и водорода. В качестве примесей в них присутствуют кислород, сера, азот и некоторые другие элементы. Из этих же элементов состоит весь органический мир (таблица 1).

Химический состав органических веществ

С

Н

О

Основные составляющие нефти и газа

Как видно из таблицы нефть по своему элементарному составу близка к другим полезным ископаемым органического происхождения. Это предполагает единый источник их образования. Содержание углерода в нефтях колеблется в пределах 79,5-87,5%, в газах – от 42 до 78%. Водород содержится в нефтях в количестве 11-14%, в газах – 14-24%. Отношение углерода к водороду колеблется в нефтях в пределах 6-8, в газах – 3-4,3. В газах некоторых месторождений содержится свободный водород, азот, углекислый газ. Сера в нефтях присутствует в свободном, либо в связанном состоянии. Связанная сера находится в виде сероводорода, либо входит в состав высокомолекулярных органических соединений. Содержание ее в нефтях иногда достигает 7-8%.

Кислород в нефтях присутствует в виде кислородных соединений нафтеновых кислот, фенолов и смолистых веществ, в газах встречается главным образом в виде углекислого газа. Содержание углекислого газа в природных газах изменяется от нуля до 100%. Содержание азота в нефтях не превышает 1%. Основная масса его находится в смолах. В газах азот находится в свободном виде, в них его содержание колеблется в широких пределах – от нуля до почти чисто азотных газов.

Количество гелия в газах обычно не более 1-2% (редко до 10%), аргона – менее 1%, лишь иногда достигает 2%.

В золе нефтей обнаружено много других элементов в небольших количествах: кремний, алюминий, железо, кальций, магний, ванадий, никель, медь, стронций, барий, марганец, хром, кобальт и др.

Изотопы в нефти

Нефти различаются по содержанию изотопов углерода, водорода, кислорода, серы и азота. Известно, что ядро атома состоит из протонов и нейтронов. Масса протона близка к массе атома водорода, заряд его равен заряду электрона, но противоположен по знаку. Количество протонов в ядре равно количеству электронов в атоме. Нейтрон электрически нейтрален, масса его несколько больше массы протона. Атомы элемента, имеющие одинаковое количество протонов, но разное количество нейтронов, называются изотопами. Углерод имеет три изотопа: с массовыми числами 12, 13, 14 – 12 С, 13 С, 14 С, из них последний радиоактивный. Он ассимилируется живыми организмами из атмосферы. Водород имеет три изотопа: 1 Н – протий, 2 Н – дейтерий, 3 Н – тритий, из них тритий радиоактивный. Кислород имеет три изотопа: 16 О, 17 О, 18 О. Сера имеет четыре изотопа: 32 S, 33 S, 34 S, 36 S. Азот имеет два стабильных изотопа: 14 N, 15 N. Наибольшее содержание в нефтях имеют легкие изотопы С, О, S, N, а из изотопов водорода – дейтерий.

Химический (молекулярный) состав нефтей и природных газов

Основными компонентами газа газовых месторождений являются метан и его гомологи: этан, пропан, бутан, пентан, гексан. Общая их формула СnH2n+2. Среди гомологов метана обычно преобладает этан, затем пропан. Газ, богатый этаном, пропаном, бутаном, пентаном называется жирным. Неуглеводородные компоненты газа представлены обычно азотом и углекислым газом, примесью сероводорода. В незначительных количествах присутствуют благородные газы – гелий и аргон. Содержание азота в газах достигает до 50%, углекислого газа — до 100%, сероводорода – до 6%, гелия – до 10%, аргона – до 2%.

Нефть представляет собой смесь трех основных групп углеводородов: метановых (парафиновых, алкановых), нафтеновых (циклановых), ароматических (ареновых)

Метановые углеводороды

Метановые углеводороды — полностью насыщенные соединения, не способные к реакциям присоединения. Общая их формула СnH2n+2. Они могут иметь нормальное строение в виде неразветвленных цепей или изостроение в виде разветвленных цепей.

Простейшие члены содержащие в молекуле от одного до пяти атомов углерода при нормальной температуре являются газами. К газам относятся: CH4 — метан, C2H6 – этан, C3H8 – пропан, C4H10 – бутан, C5H12 – пентан. Углеводороды, содержащие от 6 до 20 атомов углерода в молекуле, являются жидкими. Высокомолекулярные алканы имеют твердое состояние, называются парафинами.

Читайте также:  Салли фейс металл на гитаре

Нафтеновые углеводороды

Нафтеновые углеводороды – непредельные, циклические*соединения, углеводородные цепи которых замкнуты в пяти и шестичленные кольца. Общая их формула СnH2n. Содержание водорода в них меньше, чем в метановых углеводородах.

В нафтеновой группе могут быть одно, два или более колец. К ним могут присоединяться цепочки метанового строения – алкильные группы. Особенностью нафтеновых углеводородов и их производных является способность к изомеризации, т.е. к образованию разветвленных цепей. Под влиянием каталитических процессов системы из шестичленных циклов легко переходит в пятичленные. В легких фракциях нафтеновых нефтей преобладают производные циклогегсана, в более тяжелых – полициклические углеводороды. Углеводородные соединения, в молекулах которых присутствует более 20 атомов углерода представляют собой твердые вещества – битумы.

Ароматические углеводороды

Ароматические углеводороды имеют общую формулу СnH2n-6. Основой их строения являются бензольные кольца. Эти соединения обладают повышенной неустойчивостью и химической активностью по сравнению с метановыми и нафтеновыми углеводородами, высокой растворяющей способностью. Такие свойства обусловлены наличием в ядре двойных связей, одна из которых может стать свободной и присоединить другие молекулы. Моноциклические арены – премущественно гомологи бензола с недлинными боковыми цепями.

Среди полициклических ароматических углеводородов преобладают нафталин и его гомологи. Это уже не нефть, а битумы, с высоким молекулярным весом.

В нефтях и газах содержатся соединения, в молекулах которых помимо углеводородных радикалов входят атомы серы, азота и кислорода. Содержание метановых углеводородов в нефтях различных типов составляет 25 — 70%, нафтеновых – 15 — 75%, ароматических — до 35%.

По Дж.Ханту (1987) в «типичной» нефти, имеющей плотность 850 кг/м 3 содержание метановых углеводородов составляет 25%, нафтеновых – 50%, ароматических – 17%, смол и асфальтенов – 8%.

Источник

Микроэлементы в нефти. Металлы и Неметаллы.

В нефтях различных месторождений присутствует около 50 различных элементов в микроколическтвах, как металлов, так и типичных неметаллов:

Группы элементов Элементы ©PetroDigest.ru
Щелочные металлы
Li, Na, K
Щелочноземельные металлы
Ba, Ca, Mg
Металлы подгруппы меди
Cu, Ag, Au
Металлы подгруппы цинка
Zn, Cd, Hg
Металлы подгруппы бора
B, Al, Ga, In, Tl
Металлы подгруппы ванадия
V, Nb, Ta
Металлы переменной валентности
Ni, Fe, Mo, Co, W, Cr, Mn, Sn
Неметаллы
Si, P, As, Cl, Br, I

Не беря в расчет минеральные соли, основная часть микроэлементов нефти содержится в высококипящих фракциях, преимущественно в смолах и асфальтенах. Сами же соединения находятся в виде мелкодисперсных водных растворов солей, тонкодисперстных взвесей минеральных пород, или химически связаны с органическими веществами.

Соединения, имеющие в структуре как органическую составляющую, так и неорганические элементы разделяют на несколько классов:

  • элементорганические соединения (наличие связи углерод — элемент)
  • соли металлов органических кислот
  • хелаты (внутримолекулярные комплексы металлов)
  • комплексы, состоящие из нескольких однородных или смешанных лигандов
  • комплексы с гетероатомами или п-системой полиароматических асфальтеновых структур

Элементорганические соединения и соли металлов изучены довольно мало. Строго говоря их существование даже не доказано. Однако предположительно элементорганика образуется с участием свинца (Pb), олова (Sn), мышьяка (As), сурьмы (Sb), ртути (Hg), германия (Ge), тантала (Ta), кремния (Si), фосфора (P), селена (Se), теллура (Te), а также галогенов. Соли же органических кислот, в том числе сложных кислот смолисто-асфальтеновой части нефти образованы такими элементами, как железо (Fe), молибден (Mo), магний (Mg) и др.

Интересно отметить, что наиболее распространенными металлами в нефти являются ванадий (содержание V в золе достигает 16%) и никель (до 6,5% в золе). В большинстве случаем ванадий превалирует в сернистых нефтях, а никель — в малосернистых. Наиболее изучены порфириновые комплексы данных элементов. В такие комплексы входит от 4 до 20% всего ванадия и никеля, присутствующих в нефти, а остальное их количество связано в более сложных соединениях, строение которых до конца не изучено.

Источник

Тяжелые металлы в нефти. Как с ними бороться и где применять?

В состав нефти и пластовых вод нефтяных месторождений входят тяжелые металлы, которые представляют собой химические элементы с атомной единицей массы более 50.

В состав нефти и пластовых вод нефтяных месторождений входят тяжелые металлы, которые представляют собой химические элементы с атомной единицей массы более 50.

В золе нефти обнаружены Fe, Mn, Cr, Co, Ni, V, Mo, Cu, Zn, Pb, Hg, Sn и др., среди которых выделяются элементы (V, Ni, Zn и др.), попавшие в нефть из живых организмов в далеком геологическом прошлом. При этом V и Ni в некоторых видах тяжелой нефти имеют концентрации, достаточные для их промышленного извлечения. Как с ними бороться и где применять?

Читайте также:  Основные сплавы металлов химия

Тяжелые металлы нефтяного происхождения попадают в окружающую среду в процессе добычи, транспортировки и переработки нефти. Так, оценка содержания Cd, Pb, Zn и Ni на площадках буровых скважин в зависимости от концентрации в почве разлитой нефти, проведенная И.А. Лавриненко и О.В. Лавриненко в 1998 г., показала существование прямой корреляционной связи между этими показателями. По наблюдениям Т.Я. Корчиной и В.И. Корчина (2011 г.), негативное влияние нефтяных буровых установок сказывается в радиусе 2 км и более, так как содержащиеся в выхлопных газах дизельных приводов Pb, Cd и другие тяжелые металлы оседают на почву. При сжигании попутного нефтяного газа на факелах, тяжелые металлы в составе образующейся сажи также оседают и загрязняют прилегающие территории. Аналогичная неблагоприятная ситуация складывается при случайных разливах нефти и ее возгорании, что может происходить в результате механических повреждений нефтепроводов при проведении ремонтных работ или несанкционированных (криминальных) врезках на них, а также при опрокидывании железнодорожных цистерн с нефтью при маневровых работах.

Между тем тяжелые металлы представляют большую опасность для человека, в организм которого они могут поступать напрямую с вдыхаемым воздухом в условиях сжигания попутного нефтяного газа на факелах, горения разливов нефти, а также почвенной пылью и по пищевым цепям (растение-животное-человек) на территориях загрязненных нефтью. Так, исследованиями И.А. Лавриненко и О.В. Лавриненко, проведенными в 1998 г. на площадках буровых скважин (Большеземельская тундра), был показан высокий риск загрязнения тяжелыми металлами нефтяного происхождения северолюбки рыжеватой (Arctophila fulva) — кормового растения оленей и водоплавающих птиц. Миграция тяжелых металлов из загрязненной почвы в поверхностные и подземные воды также усугубляет ситуацию в связи с их поступлением в организм человека питьевой водой. Так, в работах И.Ю. Макаренковой (2007 г.) и Т.Я. Корчиной и соавторов (2010 г.) установлена прямая корреляционная связь между содержаниями в воде нефти и Hg, Zn, Pb и Cd.

Длительное воздействие тяжелых металлов на человека может проявляться в виде инициирования неоплазии, то есть образования новой ткани или опухоли в результате процессов окисления-восстановления в организме или растворения их частиц в плазме крови. Если металл способен достичь конкретного органа и внедриться в клетки так, чтобы со временем возникла достаточно высокая концентрация, то это вещество способно вызвать канцерогенный ответ. Так, например, соединения Ni индуцируют опухоли полости носа, гортани и почек, Pb увеличивают риск заболеваемости раком желудка, почек и мочевого пузыря, Cd индуцируют лейкемию, опухоли яичка и предстательной железы, шестивалентный Cr — рак полости носа, а соединения Hg — предстательной железы и почек. Однако основным органом в качестве мишени для перечисленных канцерогенных веществ, включая Zn и Fe, являются легкие, в которые они могут попасть непосредственно через вдыхаемый воздух и почвенную пыль.

Следует отметить, что если разливы нефти на почву можно ликвидировать посредством внесения в нее биопрепаратов или биокомпостов, приводящих к практически полному разложению углеводородов посредством углеводородокисляющих микроорганизмов, то проблему очистки почвы, загрязненных тяжелыми металлами нефтяного происхождения можно решить способом фитоэкстракции. Последняя состоит в посеве и выращивании на предварительно очищенной от углеводородов нефти почве специально подобранных видов сельскохозяйственных растений для извлечения тяжелых металлов корневой системой и накопления их в надземной биомассе, в последующем утилизируемой. При этом коэффициент биологического накопления тяжелых металлов растениями, как отношение содержания металлов в растении и почве, повышают посредством внесения в последнюю хелатообразующих агентов, то есть средств, ускоряющих очистку загрязненной почвы. Способ фитоэкстракции считается простым в исполнении и экономически целесообразным по сравнению с механическими и физико-химическими способами очистки почвы. Так, механические способы связаны с удалением наиболее загрязненного поверхностного слоя почвы и его размещением на свалках для дальнейшей утилизации, перемешиванием с менее загрязненными подповерхностными слоями почвы, посредством вспашки на глубину > 40 см, или его покрытием привозной чистой почвой. Физико-химические способы осуществляют путем промывки почвы специальными реагентами для извлечения из нее тяжелых металлов или ее очистки посредством воздействия на загрязненный слой постоянного электрического тока через электроды.

Особенности очистки почв, загрязненных тяжелыми металлами

Прежде всего, необходимо подобрать виды сельскохозяйственных растений, отличающиеся высокой скоростью роста, производящие большую надземную биомассу, имеющие глубоко разрастающуюся корневую систему и высокую сопротивляемость к болезням и вредителям, быть отзывчивыми к обычной агротехнике, удобными для уборки и непривлекательными для домашних и диких животных, чтобы не вызывать случаи интоксикации насыщенной тяжелыми металлами надземной биомассой при ее поедании.

Читайте также:  Забор металла с участка

Содержание тяжелых металлов в почве загрязненного участка, предназначенного для фитоэкстракции не должно вызывать у всходов выраженных фитотоксических симптомов (обесцвечивания, пигментации и пожелтения листьев, задержки роста и др.), что характеризует их устойчивость к тяжелым металлам и способность максимально поглощать последние корневой системой и перемещать их в надземную биомассу за счет потока, создаваемого испарением воды листовой поверхностью растений.

Для увеличения коэффициента биологического накопления тяжелых металлов в растениях необходимо применять хелатообразующие агенты из числа полиамиимер, этилендиаминтетрауксусную кислоту (ЭДТА), способную образовывать прочные водорастворимые внутрикомплексные соединения со многими металлами. Реакция образования такого внутрикомплексного соединения на примере взаимодействия ионов меди с двунатриевой солью ЭДТА представлена на рисунке. Хелатообразующие агенты повышают растворимость, подвижность металлов в почве, а, следовательно, их поглощение корневой системой и накопление в надземной биомассе.

При фитоэкстракции хелатообразующие агенты в виде водных растворов их солей вносят под растения в фазу достижения ими максимальной надземной биомассы, что позволяет повысить коэффициент биологического накопления тяжелых металлов растениями, а, следовательно, сократить время очистки загрязненной почвы.

Очистку почвы, загрязненной тяжелыми металлами необходимо проводить путем кратного посева и возделывания растений вплоть до достижения в почве фоновых или предельно допустимых концентраций веществ.

При этом экономически целесообразным для фитоэкстракции считается период продолжительностью 5-10 лет.

В каждом случае фитоэкстракция завершается жатвой, сбором и утилизацией загрязненной тяжелыми металлами надземной биомассы растений, так как уборка всей корневой биомассы, первоначально насыщаемой тяжелыми металлами затруднительна.

Надземная биомасса растений путем ее предварительного высушивания, озоления и последующей специальной обработки в дальнейшем может быть использована для извлечения из нее тяжелых металлов и повторного их применения в промышленности.

В целом фитоэкстракция тяжелых металлов из загрязненных почв согласно S. Dushenkov et al. (1997 г) складывается из следующих основных стадий и процессов: выращивание определенного вида сельскохозяйственного растения с применением соответствующей агротехники; внесение в почву хелатообразующего агента для увеличения растворимости и подвижности металлов; поглощение растворенных металлов корневой системой растения; транслокация растворенных металлов в надземную биомассу растения; концентрирование металлов в растении за счет испарения влаги.

Очистка почвы, загрязненной тяжелыми металлами с помощью растения горчицы

Фитоэкстракции тяжелых металлов обычно предшествует предварительное обследование участка на уровень его загрязненности, отбор почвенных образцов для проведения специального вегетационного опыта с определенными видами сельскохозяйственного растения и хелатообразующего агента, что позволяет оценить потенциал очистки загрязненной почвы. Так, в наших исследованиях на почве, загрязненной Cu и Ni (100 и 100 мг/кг) производили посев семян горчицы (Brassica juncea). Спустя 7,5 недель, по достижении горчицей максимальной надземной биомассы, в почву вносили ЭДТА в виде водного раствора натриевой соли данного вещества в дозах от 1 до 10 ммоль/кг и через 1 неделю растения срезали, высушивали и проводили анализ в биомассе содержания Cu и Ni; те же вещества определяли в почвенных пробах, отобранных до и после процедуры фитоэкстракции. Как оказалось, с увеличением дозы ЭДТА коэффициенты биологического накопления тяжелых металлов, а, следовательно, потенциал очистки загрязненной почвы возрастали относительно контроля (без внесения ЭДТА) для Cu в 2,8-43,6 раза, для Ni — 1,8-25,3 раза. Для количественной оценки потенциала фитоэкстракции были проведены расчеты периодов достижения фоновой концентрации Cu и Ni по формуле t = ln (yo/y)/k, где yo — действительная концентрация металла в почве; y — фоновая концентрация металла в почве; k — константа скорости убыли содержания металла в почве. Было установлено, что кратность посева и выращивания горчицы с применением ЭДТА значительно сокращала время очистки почвы, загрязненной тяжелыми металлами. Так, время достижения фоновых концентраций Cu (31,6 мг/кг) и Ni (63,5 мг/кг) при внесении в почву ЭДТА в дозах от 1 до 10 ммоль/кг уменьшалось относительно контроля (без внесения ЭДТА) соответственно от 2 до 2,6 и 2,6 до 3,3 раза.

В целом двукратный посев и выращивание горчицы в течение одного вегетационного сезона может в 2 раза сократить время очистки почвы, загрязненной тяжелыми металлами во всех вариантах опыта.

Таким образом, загрязнение почв тяжелыми металлами нефтяного происхождения, как весьма опасными для человека веществами, является значимой геоэкологической проблемой, требующей безотлагательного решения в регионах, связанных с добычей, транспортировкой и переработкой нефти. Наиболее приемлемым способом очистки почв, загрязненных тяжелыми металлами является фитоэкстракция, как простой в исполнении и экономически целесообразный подход по сравнению с механическими и физико-химическими способами.

Автор: Владимир Башкин, Начальник лаборатории ООО «Газпром ВНИИГАЗ», Д.б.н., профессор, Рауф Галиулин, Ведущий научный сотрудник ИФПБ РАН, Д.г.н., Роза Галиулина, Научный сотрудник ИФПБ РАН

Источник

Поделиться с друзьями
Металл